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This thesis presents the results of muon-spin relaxation (µ+SR) studies into magnetic
materials, and demonstrates how these results can be exploited to quantify the
materials’ low moments and reduced dimensionality.

Dipole-field simulations, traditionally used to estimate likely muon sites within
a crystal structure, are described. A novel Bayesian approach is introduced which
allows bounds to be extracted on magnetic moment sizes and magnetic structures—
previously very difficult using µ+SR—based on reasonable assumptions about
positions in which muons are likely to stop. The simulations are introduced along
with relevant theory, and MµCalc, a platform-independent program which I have
developed for performing the calculations is described.

The magnetic ground states of the isostructural double perovskites Ba2NaOsO6
and Ba2LiOsO6 are investigated with µ+SR. In Ba2NaOsO6 long-range magnetic
order is detected via the onset of a spontaneous muon-spin precession signal below
Tc = 7.2(2)K, while in Ba2LiOsO6 a static but spatially-disordered internal field is
found below 8 K. Bayesian analysis is used to show that the magnetic ground state
in Ba2NaOsO6 is most likely to be low-moment (≈ 0.2µB) ferromagnetism and not
canted antiferromagnetism. Ba2LiOsO6 is antiferromagnetic and a spin-flop transi-
tion is found at 5.5 T. A reduced osmium moment is common to both compounds,
probably arising from a combination of spin–orbit coupling and frustration.

Results are also presented from µ+SR investigations concerning magnetic order-
ing in several families of layered, quasi–two-dimensional molecular antiferromag-
nets based on transition metal ions such as S = 1

2 Cu2+ bridged with organic ligands
such as pyrazine. µ+SR allows us to identify ordering temperatures and study the
critical behaviour close to TN, which is difficult using conventional probes. Combin-
ing this with measurements of in-plane magnetic exchange J and predictions from
quantum Monte Carlo simulations allows assessment of the degree of isolation
of the 2D layers through estimates of the effective inter-layer exchange coupling
and in-layer correlation lengths at TN. Likely metal-ion moment sizes and muon
stopping sites in these materials are identified, based on probabilistic analysis of
dipole-fields and of muon–fluorine dipole–dipole coupling in fluorinated materials.
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Chapter 1

Introduction

Magnetism is a field encompassing profound fundamental questions and cutting-
edge technological applications. In the absence of a reliable universal description of
the bulk behaviour of atoms in crystalline solids, empirical research into magnetic
materials continues to be of great importance. Furthermore, the limits on our
understanding inevitably mean that future technological developments may well
arise at least partly serendipitously, lending further weight to the case for a wealth
and diversity of experimentation.

This thesis concentrates on a selection of magnetic materials with unusual prop-
erties, ranging from the strangely weak magnetism in a pair of osmium compounds,
to the quasi–low-dimensional magnetism in molecular magnetic systems, where
the magnetic interactions in three-dimensional crystals are significantly stronger in
two-dimensional planes than they are between those planes. Molecular magnetism
in particular offers a rich playground for both fundamental physicists and aspiring
technologists: based on the complex chemistry of carbon, molecular materials can
be created with an increasing degree of control, iterating towards bespoke design of
magnets to test specific theories, or to dovetail precisely into desired applications.

The unifying theme of this thesis is the study of these novel materials using
muon-spin relaxation, or µ+SR. Muons are short-lived exotic particles rather like
heavy, positively-charged electrons, and their use as probes in magnetic systems
provides unique insight into the physics of many materials. Muons can be cre-
ated fully spin-polarised, and embedding them within a material allows its local
properties to be studied by following how the muon-spin relaxes during its brief
existence. One of the chief difficulties with µ+SR is that where exactly the muon will
choose to embed is a priori unknown, making quantitative interpretation of some of
the results impossible. However, work in this thesis seeks to partially circumvent
this restriction by making reasonable assumptions about where a muon is likely
to sit, and consequently making probabilistic estimates of magnetic moments or
structures.

1



1. Introduction

1.1 Thesis structure
Chapter 2, Muon-spin rotation and relaxation: The µ+SR technique is described,

providing background together with a brief overview of theoretical
and experimental considerations. Aspects relevant to this thesis are
emphasised.

Chapter 3, Dipole-field simulation: Dipole-field simulations for locating muon
sites are explained, along with the mathematical tools underpinning
them (Ewald summation, magnetic propagation vectors). A novel
Bayesian method allowing muons to be used to extract bounds on
magnetic properties is introduced.

Chapter 4, Low-moment magnetism in Ba2MOsO6 (M = Li, Na): A pair of un-
usual osmate compounds are investigated, with µ+SR results being used
to ascertain the magnitude of probable low magnetic moments in both.

Chapter 5, Introduction to two-dimensional molecular magnetism: Introductory
material is provided for the following two chapters, introducing two-
dimensional magnetism and the molecular compounds which we will
use as model systems to probe it.

Chapter 6, Quasi–two-dimensional molecular magnets [Cu(HF2)(pyz)2]X: Mag-
netism in a family of copper-based molecular compounds is explored
with µ+SR, with a combination of Fµ oscillations and Bayesian dipole
field simulations being used to extract the moments on the copper ions.

Chapter 7, Other quasi–two-dimensional molecular magnets: A short review of
related two-dimensional molecular magnets investigated with µ+SR is
provided.

2



Chapter 2

Muon-spin rotation and relaxation

In muon-spin rotation and relaxation (known together as µ+SR) [1] we take spin-
polarised muons and fire them into a sample of interest, and the time-evolution
of their spins is then monitored. µ+SR is often compared to nuclear magnetic
resonance (NMR) or electron spin resonance (ESR), with which it was named
in analogy. However, a fortunate accident of nature, the parity-violating weak
interaction, allows muons to be created in fully spin-polarised ensembles, and
removes the requirement for a radio-frequency or microwave pulse to perturb
the system to allow a measurement to be made. Thus, it is incorrect to refer to
conventional µ+SR as a resonance experiment, although there does exist a technique
known as muon-spin resonance, another µ+SR, which does employ electromagnetic
pulses to excite spins of muons, or those in the sample [2, 3, 4].

In the following, I describe the principles of a µ+SR experiment: the muon is
introduced in Sec. 2.1; then, the experimental method is explored in Sec. 2.2, from
production of the particles, through guiding to and implantation in the sample, to
decay, and then detection of the decay products. The idealised experimental set-up
is laid out in 2.3; this is followed by an overview of the kinds of relaxation functions
used in this thesis, given in Sec. 2.4; and finally, some practical considerations are
given in Sec. 2.5.

Full reviews of µ+SR can be found in Refs. 1, 5, 6, 7, 8.

2.1 The muon

Muons are charged leptons—elementary particles belonging to the same family
as electrons. The muon’s properties are identical to those of the electron, except
that it is around 200 times heavier; like the electron, its antimatter and matter
incarnations carry a charge ±e, respectively, and both carry a spin S = 1

2 . It is
unstable, with a mean lifetime of 2.2 µs, making the muon the longest-lived unstable
subatomic particle with the exception of the neutron; the muon lifetime exceeds
that of pions or kaons, the next most stable subatomic particles, by one hundred
times [9]. Its properties are summarised in 2.1. The only practical comparable

3



2. Muon-spin rotation and relaxation

property value

mass, m 1.8835× 10−28 kg
105.66 MeV/c2

207me
0.11mp

charge, q +1.602× 10−19 C
+e

spin, S 1/2

magnetic moment, µ 4.4904× 10−26 J T−1

0.004 88µB
8.891µN

gyromagnetic ratio, γ 135.53 MHz T−1

mean lifetime, τ 2.197 µs

Table 2.1: The properties of the positive muon, µ+. In the table, c is the speed of
light, me is the electron mass, mp is the proton mass, e is the elementary charge, µB
is the Bohr magneton and µN is the nuclear magneton.

γ e− µ+ n 8Li+

m 0 me 207me 1840me 14 600me
q 0 −e +e 0 +e
S 1 1/2 1/2 1/2 2
µ 0 −1.0011µB 4.88× 10−3µB −1.713× 10−3µB 9.02× 10−4µB
γ 0 28.02 GHz T−1 135.5 MHz T−1 183.3 MHz T−1 6.26 MHz T−1

τ ∞ > 4.6× 1026 y 2.197× 10−6 s 885 s 1.2 s

Table 2.2: The properties of the positive muon, µ+, compared to other common
probes in condensed matter physics, the neutron, n, electron, e−, photon, γ, and
8Li+, an ion commonly used in βNMR [10]. Values are quoted in terms of the
electron mass me, the elementary charge e, and the Bohr magneton µB. Data are
from Refs. 9, 11.

probes for condensed matter physics are light atomic nuclei which undergo β-
decay [10], for example 8Li. However, these ions can only be implanted near the
surface and constitute a significantly larger defect in a crystal than a muon [10].
A review of the properties of common condensed matter probes is available in
Table 2.2.

Muons are produced naturally by interactions between high-energy particles
with the atomic nuclei of gases in the upper atmosphere. In fact, there are around
10 000 muons passing through every square metre of the Earth’s surface every
minute [9], and consequently several passing through you every second as you read
this. These natural muons—dubbed cosmic rays—were the first to be observed in
1936 [12]. The fact that so many survive the journey from their production high in

4



2.2. The µ+SR experiment

the atmosphere at around 15 km altitude [9] (roughly 50 µs at the speed of light,
and thus over 20 muon lifetimes), is a demonstration of relativistic time-dilation.
This was confirmed in 1963, by identical muon-counting experiments atop Mount
Washington and near sea level in Cambridge, Massachusetts, which found that the
ratio of count rates was commensurate with the predictions of relativity [13].

2.2 The µ+SR experiment

The first µ+SR experiment [14] was performed in 1957. Its purpose was not to
examine a condensed matter system, but to test the Lee–Yang proposal that the
weak interaction violated parity [15]. This further corroborated the proposal, and
demonstrated the principles that underpin all muon spectroscopy: without parity
violation, we could neither produce our spin-polarised muons in the first place, nor
glean anything useful about them from their decay.

Facilities producing muons for condensed matter exist at only a few locations
around the world. The work contained in this thesis was performed primarily at
ISIS, the synchrotron at the Rutherford Appleton Lab, Didcot, UK, and the Swiss
Muon Source (SµS) fed by the cyclotron at the Paul Scherrer Institut, Villigen,
Switzerland.

The following section outlines the principles of a µ+SR experiment, starting
with the particle physics processes which lead to muon production, then describing
successively the processes by which a muon is guided to the sample, embeds within
it, interacts once embedded, and finally, the physics of muon decay which allows
us to make measurements of its interactions.

2.2.1 Muon production

The mass of the muon makes it impossible to produce one by nuclear fission, fusion
or decay; the only way to produce muons is in a particle accelerator. A beam of
high-energy protons is collided with a thin production target of a light element
(taking ISIS as an example, 800 MeV protons are collided with graphite). Pions are
then produced by collision between the protons and nucleons in the target’s atomic
nuclei by processes such as

p + p → p + n + π+,
p + n → p + p + π−, (2.1)

where p denotes proton, n neutron and π± denote the positive and negative pion,
respectively. This process stops a few percent of the protons, leaving the rest of
the beam largely undeviated such that it can be used for other applications, often
neutron production, downstream.

Charged pions comprise a down quark and an up antiquark, or vice-versa.
They are the lightest charged hadrons, and consequently must decay via the weak
interaction into leptons, which they do with a mean lifetime 26 ns. Conservation of

5



2. Muon-spin rotation and relaxation

lepton number requires that an appropriate neutrino (ν) be produced, giving rise
to the reaction

π+ → l+ + νl , (2.2)

where l = µ, e; a muon or an electron. An accident of the weak interaction and
conservation of angular momentum results in l = µ being preferred over l = e with
a ratio of approximately 8000:1. A further upshot of conserving angular momentum
is that the muons produced are fully spin-polarised.

The muons used for experiments in this thesis are positively charged antimuons.
Negative muons µ− usually fall into low atomic orbitals in extreme proximity to
atomic nuclei. An order of magnitude estimate can be made by evaluating the Bohr
radius with the muon mass substituted for the electron mass,

aµ ≈
4πε0h̄2

mµe2 = a0
me

mµ
= 26 pm (2.3)

where ε0 is the permittivity of free space, h̄ is the reduced Planck constant, me is
the electron mass and e is the fundamental electric charge. The muonic Bohr radius
aµ is then related to the electronic Bohr radius a0 by the ratio of electron and muon
masses. This results in a high probability density very near to the nucleus, and is a
useful probe of nuclear charge distribution, or can be used to decrease the electric
potential barrier which inhibits nuclear fusion [16]. However, condensed matter
physics is more concerned with electronic behaviour, and hence it is better to use
µ+ which come to rest in areas of high electron density.

Most muons used in condensed matter are so-called surface muons, produced
from pions at rest in the surface of the production target. Conservation of energy
and momentum allows the kinetic energy Ek of the muon to be simply evaluated:

Ek =

(
m2

π −m2
µ

2mπ

)
c2 = 4.119 MeV, (2.4)

where mπ,µ are the pion and muon masses, respectively, and c is the speed of light.
The momentum of these surface muons is psurface = 29.79 MeV/c. Alternatively,
production can proceed via the decay channel, where pions which decay in flight
are utilised to create muons with higher energy. This gives rise to a higher-energy
beam which penetrates deeper into material before stopping, but with a broader
energy and momentum distribution (typically 70 < pdecay < 130 MeV/c [6]), and
spin-polarisation < 100%.

2.2.2 Muon beams

Muons are guided from the production target to the sample down an evacuated
beampipe by a series of electromagnetic devices. As well as correctly guiding
muons, it is important to discard as many other particles which may be produced at
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2.2. The µ+SR experiment

the target as possible; this reduces both spurious counts in experimental detectors
and sample radiation damage.

Dipole steering magnets are used to alter the course of the muons. Because
the g-factor of the muons is very nearly 2 (gµ = 2.002 332), magnetic fields rotate
the muons’ spin and trajectory at very nearly the same rate, ensuring that this
manipulation does not affect the relative direction of their spin and motion. The
radius of curvature r in a magnetic field B is a function of particle charge q and
momentum p,

r =
p

qB
. (2.5)

This also allows particles with a specific p/q ratio to be selected by placing a slit
after the bending magnet, removing all uncharged particles such as neutrons and
photons, and all negatively-charged particles such as electrons and negative muons,
but positively-charged particles, such as positrons or positive pions, may pass if
they have the correct momentum.

Particles can also be selected by velocity using a crossed-field separator, which
employs perpendicular electric and magnetic fields. The magnetic field applies a
force Bqv perpendicular to both the particle velocity and the magnetic field, whilst
the electric field of magnitude E applies a force Eq parallel to its field direction.
Particles will continue undeflected if these forces are equal and, since only one
depends on velocity, a single value of this is isolated. Applied to a beam in
conjunction with momentum selection, positive particles other than muons are
removed.

Quadrupole focusing magnets are used to focus a beam travelling with a given
momentum in the z-direction along one direction in the xy-plane, whilst defocusing
the beam in the remaining perpendicular direction. It is only possible to focus in
one dimension in the xy-plane in a single quadrupole, but a series of units with
alternating polarity can be used to give a net focussing effect. These can be used to
collect muons near the production target, and to focus the beam onto the sample.

There are sometimes multiple instruments attached to one beamline, so electro-
magnetic kickers are used to direct muons to the appropriate apparatus. At ISIS,
for example, the muons arrive in a pair of closely-spaced pulses (see Sec. 2.5.2),
and a large electric field can be used to deflect the first into one instrument before
being rapidly removed for the arrival of the second pulse, allowing it to continue
undeflected into a different experimental apparatus.

Electric fields do not couple to spin and consequently only change the muon
momentum. This means that the muon direction of travel is rotated with respect
to its spin in an electric field. This can be unintentional—a typical beamline with
separators and kickers will rotate a muon-spin by a few degrees—or it can be used
to rotate the spin with respect to the detector geometry before implantation, in a
spin rotator. This can be used to alter the experimental geometry, as examined in
Sec. 2.3.
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2. Muon-spin rotation and relaxation

2.2.3 Muon stopping processes

The energy of a muon determines its likely penetration into matter. Extremely
high-energy muons are very highly penetrating: neutrino detection experiments
are often placed several miles underground in order to shield them from spurious
events due to cosmic ray muons [17]. Muons used in condensed matter research
have a more moderate energy in order that they will stop in samples of typical size
. 1 cm3.

The 4 MeV surface muons have a typical stopping range in matter of 110 mg cm−2,
with a range width of approximately 20% [18]. The processes which bring the muon
to a halt occur in several distinct stages. First, over a period of approximately 0.1 ns
to 1 ns, the muon is decelerated to an energy of a few keV by ionisation of atoms and
scattering with electrons. Then, during a period lasting around a picosecond, the
muon rapidly captures and loses successive electrons, forming fleeting muonium
states (see Sec. 2.2.4), bringing its energy down to a few eV. Finally, the muon (or
muonium) thermalises, shedding almost all of its excess energy and coming to rest.
Typical energies required to create a crystal vacancy are significantly larger than
muon kinetic energy in the latter stages of its deceleration; the muon comes to rest
~µm from any sample damage it has caused, and these effects can be neglected.
Since the stopping processes primarily involve electrostatic interactions, the muon
implants with no significant reorientation of its spin. Futher information on these
stopping processes can be found in Ref. 19.

The ‘surface muon’ nomenclature has the potential to be slightly confusing,
because it refers to the position of the parent pions on the surface of the production
target, rather than to the muon sites in the sample. To enable studies near the
surface of samples, or involving films or thin layers, slow muons are created [20].
These are manufactured by taking conventional surface muons and reducing their
momentum by first stopping them in a moderator, such as frozen argon, followed
by subsequent re-acceleration with electric fields. Conversely, if deeper penetration
into the sample is required, decay channel muons (see Sec. 2.2.1) are used instead.
This can be used, for example, to allow muons to traverse a reinforced pressure cell
before coming to rest in the sample contained within it.

2.2.4 Interaction with the sample

The scenario in which µ+SR lends itself to simplest interpretation is the case of
the muon interacting passively with its surroundings. In many magnetic and
superconducting samples it is permissible to approximate the muon as an inert
probe of local field. Muons possess a magnetic moment, and will therefore undergo
Larmor precession in a magnetic field. Since the muon possesses S = 1

2 , it only
experiences this simple dipolar coupling to its environment without the added
complication of quadrupolar coupling, as seen in many NMR nuclei, or 8Li.

To take the simple example of an ordered ferromagnet with a single muon site,
every muon in the ensemble experiences the same single value of magnetic field.
This results in a coherent precession of the muon-spins, and is known as muon-spin
rotation. In more complex materials, multiple magnetically-inequivalent sites may
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2.2. The µ+SR experiment

Mu H T
mass (me) 208 1837 5498

reduced mass (me) 0.9952 0.9995 0.9998
Bohr radius (nm) 0.053 17 0.052 95 0.052 93

ionisation energy (eV) 13.540 13.598 13.603

Table 2.3: Comparison of properties of muonium (Mu = µ+e−), protium (1H = pe−)
and tritium (3H = T = pnne−), illustrating that muonium can be viewed as a light
isotope of hydrogen.

give rise to a number of precession frequencies, or a distribution. For example,
in many materials randomly-orientated nuclear moments cause random magnetic
fields at muon sites resulting in no coherent precession, but a slow depolarisation
of muon spins. Further, fluctuations of the local field in the time domain can give
rise to relaxation of the muon ensemble’s polarisation caused by anything from
critical fluctuations near a phase transition to passing ‘magnetic monopoles’ in
spin-ice [21].

It is also possible for the muon to interact quantum-mechanically with nearby
spins. In an ordered magnet, the strength of the exchange interactions and size of
electronic spins means that the muon does not perturb the spin system, and simply
sees the field it generates. A two-way interaction requires a spin whose coupling to
its environment is much weaker, the prototypical example being a fluorine nucleus.
Through a quantum-entangled dipole–dipole interaction, the muon enters a bound
Fµ state (see Sec. 6.3).

As a positively-charged particle in matter, a further possibility is that the muon
can capture an electron in a sample and form a hydrogen-like atom known as
muonium (symbol Mu). Though the muon is a lepton, it can be considered a
light proton in these circumstances. Since its mass is more than two orders of
magnitude greater than an electron, but only nine times less than a proton, the
atomic physics of Mu is startlingly similar to H. Some properties of muonium,
hydrogen and tritium are compared in Table 2.3. The effects of muonium formation
are not examined in detail in this thesis, but an overview can be found in Refs. 5, 22.

2.2.5 Muon decay

The muon decays via the three-body process

µ+ → e+ + νe + ν̄µ, (2.6)

creating a positron (antielectron), plus an electron-neutrino and a muon-antineutrino
to conserve lepton number. Like muon production, this too is a weak decay
and consequently violates parity. This manifests in the positron being emitted
preferentially in the direction of spin of the dying muon—and the positron is
the only one of these three particles which we might hope to reliably detect.
Unfortunately however, the extra degree of freedom introduced by the third decay
product means that this process does not enjoy the simplicity of muon production.

9



2. Muon-spin rotation and relaxation

µ+ spin direction

Figure 2.1: A polar plot showing the asymmetric emission directions of the positron
in the aftermath of muon decay, averaged over all energies (see text). The thick
yellow arrow represents the axis of the muon spin, which is also the most likely
direction of positron emission.

The emerging positron can vary in both energy and the angle at which is it emitted.
The angle of emission is distributed about the muon spin direction in cardioid form,

N(θ) = N0(1 + a cos θ). (2.7)

For the maximum possible positron energy of 52.83 MeV, a = 1; integrating over all
possible energies, a = 1

3 , leading to the less pronounced angular distribution shown
in Fig. 2.1. Nonetheless, this finite asymmetry still allows muon-spin precession to
be followed arbitrarily precisely, given enough data.

2.3 Experimental set-up
In order to monitor the time-evolution of muon spin direction, scintillation detectors
are set up around the sample to count the outgoing positrons as a function of angle
and time. The simplest experimental configuration involves just two detectors: one
forward (F) and one backward (B) of the initial muon-spin direction. The difference
in count rate between these is then monitored as a function of time, and divided by
the total count rate to normalise with respect to the ever-decaying population of
muons remaining in the sample. The experimental quantity of interest is then the
positron asymmetry,

A(t) =
NF − αNB

NF + αNB
, (2.8)

where α is an empirical constant to take into account any slight inequivalencies
between the forward and backward detectors. These can result from efficiency
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differences in the scintillators and electronics, asymmetric sample positioning,
difference in solid angle coverage of the detectors, and so on. A(t) ∝ pz(t); meaning
that the measured quantity, A(t) gives us direct access to the quantity of interest,
pz(t), the component of the muon-spin polarisation along the z-axis of the apparatus.
A schematic diagram of this experimental configuration is shown in Fig. 2.2 on the
following page.

In an ideal apparatus, the initial asymmetry when all muon spins are polarised
towards the F detector would be the energy-integrated value of a from Eq. (2.7),
A(t = 0) = a = 1

3 . However, various factors reduce this in reality, including the
limited solid-angle coverage of the detectors; the exclusion of low-energy positrons
which stop in the sample, cryostat or detector wrappings; and the effects of magnetic
field on positron trajectories [23, 24]. In fact, a typical initial asymmetry is around
A(t = 0) = 25%.

This configuration is known as the longitudinal field or LF configuration, where
any magnetic field Blong is applied parallel to the initial muon spin direction.
(Applying such a longitudinal field is not performed in the experiments featuring
in this thesis.) The zero-field or ZF configuration is identical, but in the special
case of no applied field. If muons were to stop in a sample with which they did
not react at all, the ‘null’ data measured in this geometry would be a flat line at
A(t) = A0. In addition to this geometry, there exists the transverse field, or TF,
configuration in which the field is applied perpendicular to the initial muon spin
direction, leading to a precession of the spins around the applied field. This means
that the ‘null’ asymmetry function in an applied field Btrans would be a cosine,
A(t) = A0 cos γµBtranst. In this configuration, a larger number of detectors may be
used to track the muon-spin direction as it rotates.

2.4 Relaxation functions
The asymmetry spectra A(t) generated in µ+SR are typically fitted in the time-
domain. The fitting function used is known as a relaxation function, and a diversity
of forms reflects a diversity of underlying physics. In general, a muon responds to
its local magnetic field B by precessing about the component of it transverse to the
muon-spin direction with a Larmor frequency given by

ω = γµB (2.9)

where γµ = 2π× 135.5 MHz T−1 is the muon gyromagnetic ratio and B = |B| is the
magnitude of the magnetic field at the muon site. Semiclassically, we can consider
this as the muon-spin precessing at the end of a cone of half-angle θ, where θ is
the angle between muon-spin direction and local field direction (see Fig. 2.3). The
polarisation of the muon ensemble projected along the z-direction as a function of
time will then be given by

pz(t) = cos2 θ + sin2 θ cos (γµBt) . (2.10)

In this section, we will discuss first the case where the field bathing the muon
originates entirely from the behaviour of the sample (Sec. 2.4.1). Then, the effect of
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Figure 2.2: Schematic diagram showing a simple µ+SR experiment where muons
implant in a sample and experience a uniform B-field directed perpendicular to the
paper. (a) At t = 0, one or more muons are injected into a sample from the right.
Their spins, represented by the gold arrows, are directed antiparallel to their linear
momentum. The muons implant at random positions throughout the sample. This
image shows either a pulse of muons from a pulsed muon source, or the aggregate
of many events at a continuous source. The sample is positioned between forward
and backward detectors, F and B. (b) Moments later, positrons are being emitted
along the direction of muon-spin; these are represented by blue lines. The upper
graph on the right shows the raw count rate. This is higher in the backward detector
(blue line) than the forward one (red line), with the central green line showing the
average count rate. The lower graph then shows the muon polarisation along the
z-direction, pz(t), obtained from Eq. (2.8).
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Figure 2.2: (continued) (c) A time nearly t = π/γµB later, the muon-spins have
precessed through almost 180°, giving rise to more counts in the forward positron
detector than the backward one. The central average line has progressed, and it is
now easily seen that it reflects the exponential decay of the muon population with
τµ = 2.2 µs. The asymmetry line, normalised for this decay, remains cosinusoidal.
(d) At late times, only a few muons remain. The complete A(t) trace to 4 µs is
shown.
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B

sµµ
+ θ

Figure 2.3: The semi-classical picture of a muon-spin, pointing along a direction sµ,
precessing around the local field B.

applied magnetic field will be considered. Applying field allows us to explore the
phase diagram of the sample, but also has a direct effect on the muons and thus the
asymmetry spectra obtained: the case where an external magnetic field is applied
perpendicular to the initial muon-spin direction is briefly explored in Sec. 2.4.2.

Fitting muon data in this thesis was performed using the Windows Muon Data
Analysis (WiMDA) package [25].

2.4.1 Zero-field

In materials with spontaneous magnetic properties, µ+SR can be used to probe
samples without application of an external field. In an ordered magnet, Eq. (2.10)
can give rise to spontaneous precession of the muon ensemble. Single-crystal
experiments with muons are not considered in this thesis, and consequently we take
a powder average, imagining that an infinite number of randomly-aligned crystallites
make up the sample under study. This is not a significant experimental hindrance
because the precession frequency depends only on the magnitude of the local field,
with only the amplitude of that precession depending on the direction. Taking a
powder average over Eq. (2.10) yields

pz(t) =
1
3
+

2
3

cos (γµBt) , (2.11)

due to the 1
3 of crystallite orientations in which the local field will lie parallel to the

initial muon-spin components. Thus, the onset of magnetic order can be seen by
two effects: firstly, the presence of oscillations, and secondly the emergence of a
1
3 -tail, a baseline at long times below which the spectra do not relax. An example of
spectra above and below a magnetic transition in [Cu(HF2)(pyz)2]BF4, a material
discussed in Chapter 6, is shown in Fig. 2.4.

For a single muon site which is magnetically equivalent throughout the crystal,
this results simply in a cosinusoidal oscillation in asymmetry. In more complex
static fields, the resulting asymmetry function is somewhat like a cosine Fourier
transform of the local fields at the muon sites, but taking care to perform an
appropriate angular average. A simple case which illustrates the importance of
angular averaging in µ+SR spectra is that of a random local field at the muon site,
normally-distributed about a mean of zero. This might occur, for example, in a
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Figure 2.4: Example A(t) spectra with fits above (T = 25 K) and below (T =
0.3 K) the magnetic transition temperature TN = 1.4 K for [Cu(HF2)(pyz)2]BF4.
The two spectra are approximately equal in initial asymmetry, but the presence
of oscillations and ‘1

3-tail’ observed unambiguously identify the ordered phase.
The slow oscillation observed for T > TN is due to muon–fluorine dipole–dipole
oscillations (see Sec. 6.3).

spin-glass. The muon polarisation then follows the Kubo–Toyabe function,

pKT(t) =
1
3
+

2
3

(
1− ∆2t2

)
e−∆2t2/2, (2.12)

where ∆ =
√

γ2
µ 〈(B− 〈B〉 2)〉 is the field width (the second moment of the field

distribution, whose mean is 〈B〉, in frequency units), shown in Fig. 2.5. Note that
this is not simply a Gaussian, as a naïve Fourier transform might lead us to imagine,
though at early times it is well approximated by one. After an initial depolarisation,
with the pz(t) reaching a minimum at ∆t =

√
3, the 2

3 of muon-spin components
perpendicular to their local field dephase entirely, leaving the 1

3 -tail of parallel spin
components.

Another prototypical relaxation function occurs in materials with an incom-
mensurate magnetic structure, resulting in a field at the muon site which varies
sinusoidally with the unit cell in which the muon stops. This distribution of local
fields results in the muon relaxation following a Bessel function [26, 27].

As well as static field distributions, the muon ensemble can be relaxed by
dynamics present within the sample. This will usually give rise to an exponential
relaxation of the form e−λt. In the fast-fluctuation limit, where 1/τ � ∆ (i.e. the
fluctuation rate, given as the reciprocal of the correlation time τ, results in much
faster depolarisation than the distribution of fields, ∆), then the relaxation rates
are expected [28] to vary as λ ∝ ∆2τ. This is the case in most magnetic materials,
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Figure 2.5: The Kubo–Toyabe function in zero field [Eq. (2.12)].

where the effect of variation in field within a set of muon sites is small compared to
the fluctuations in those fields caused by the dynamic behaviour of local moments.

2.4.2 Transverse field

As mentioned in Sec. 2.3, the asymmetry function in an applied transverse field
(TF), Btrans, with muons stopped in an entirely inert sample would be a cosine. In
a real sample, the cosine may have its frequency slightly shifted from that which
would be expected in the applied field, and is modulated by a relaxing envelope
dependent on the physics of the system being probed. This gives rise to the general
TF relaxation function

A(t) = A0 cos (ωt) R(t), (2.13)

where A0 is the initial asymmetry, ω ≈ γµBtrans is the angular frequency of the
oscillation, and R(t) is some function describing the relaxation.

In a magnetic system, transverse fields small relative to the internal fields in the
sample give rise to complex behaviour. Firstly, we must account for any change
in internal field brought about by magnetisation in the sample but, further, these
internal fields must be vector-summed with the field applied. In large applied field,
the internal fields act as a small correction to the external field and thus, in a powder
sample, we can consider the TF relaxation function as a cosine with ω = γµBtrans
and a relaxation governed by the magnitude of the internal fields. This method is
used to investigate the B–T phase diagram in a molecular system in Sec. 6.2.

Another typical use of the TF geometry is to probe superconductivity. Type II
superconductors below their critical temperature Tc enter the mixed state when an
external field Bc1(T) < B < Bc2(T) is applied. This state is characterised by a vortex
lattice of magnetic flux quanta, with a typical lattice spacing of order nm. Since
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Figure 2.6: (a) A schematic diagram of the magnetic field in the superconducting
vortex lattice, and (b) the distribution of fields arising from this. Arrows link
corresponding points on the two diagrams: the maximum and minimum fields at
the vortex cores and furthest from them, respectively; and the modal field, at an
intermediate position. Diagram follows Ref. 1.
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Figure 2.7: µ+SR spectra for LiFe0.99Ni0.01As above and below the superconducting
transition temperature Tc = 13.4 K in a transverse field of 10 mT. Relaxation of the
spectrum taken at 5 K results from the distribution of local magnetic fields arising
from the superconducting vortex lattice. Data taken from Ref. 29.
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muons can stop at any set of crystallographically-equivalent sites, they decorate this
lattice on a significantly smaller length scale, and can be considered to sample the
entire vortex lattice. This results in the muons sampling a distribution of magnetic
fields, highest at the centre of the vortices and lowest at positions furthest away from
them. Thus, whilst R(t) ≈ 1 in a sample above the superconducting transition, the
asymmetry function below the transition is given by the cosine Fourier transform of
the new field distribution. This gives rise to a relaxing cosine which, in general, will
have a frequency which differs slightly from the applied Btrans by the diamagnetic
shift. This is shown schematically in Fig. 2.6, and with data taken by the author on
Ni-doped LiFeAs in Fig. 2.7.

2.5 Experimental considerations

2.5.1 Continuous beam sources

Muon sources can be divided into two classes: continuous sources, where the
muons arrive in a quasi-continuous stream; and pulsed sources (see Sec. 2.5.2). In a
continuous source, a single muon is in the sample at any given time. Muons arrive
intermittently and implant in the sample. Veto detectors positioned behind the
sample can be used to flag up muons which have flown past the sample and not
implanted. The clock starts when a muon enters the detection apparatus, and stops
when a decay positron is incident on one of the detectors. However, if a second
muon arrives before a positron is detected, it is impossible to know which of the
two subsequent decay positrons came from which muon, and both events must be
discarded.

The requirement that only one muon be present at any given time restricts
both the event rate and the low-frequency resolution of a continuous source. Since
a muon may arrive and interrupt your experiment, increasing the rate of muon
production eventually reduces the event rate of your experiment, because many
events must be discarded. Similarly, increasing the time window over which
each event is recorded in an attempt to increase the low-frequency resolution also
increases the probability that a new muon will arrive and interrupt an event; thus,
event rate and low-frequency resolution are in competition with one-another. A
further consequence of a continuous source is high background; muons which
neither embed in the sample nor set off the veto detector can result in spurious
counts, especially at long times. In fact, this sets a practical limit of around 10 µs on
experimental counting.

2.5.2 Pulsed sources

A pulsed muon source delivers muons in large bunches rather than individually.
All the muons implant in the sample approximately simultaneously, starting the
experimental clock, and positron emission is timed with respect to the arrival of the
pulse.
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The chief disadvantage of a pulsed source is that a resolution limit is imposed
on precession frequencies by the width of the pulse. The ambiguity in muon arrival
time means that, roughly speaking, if the magnetic field being measured is such
that the first muons to arrive have undergone one spin rotation by the time the last
muons arrive, then those in between will find themselves at every intermediate
stage in the precession, and any signal will be washed out. More precisely, a
frequency resolution function can be extracted by taking the Fourier transform
of the incoming pulse. In the simplest case of a single broad pulse, a monotonic
reduction in signal amplitude occurs up to some cut-off frequency above which
muon precession cannot be reliably observed.

In spite of this restriction, it may still be possible to detect a transition to
long-range magnetic order where frequencies are too high to resolve. Significant
reductions in initial asymmetry below the transition are often observed because
a reduced value of A(t) corresponding approximately to the average value of the
invisible oscillations is seen. Conversely, asymmetry at long times can increase due
to the effect of the 1

3 -tail, described in Sec. 2.4.1. It is also often possible to observe
discontinuous variations in relaxation rates with temperature.

The limit on the rate of data acquisition at pulsed sources is imposed by the finite
detector dead time (often around 10 ns). This is the time after detection of a positron
during which further positrons will not be acknowledged. Consequently, rather
than using just two detectors as in an idealised µ+SR experiment, large numbers of
individual detectors are used. In LF configuration, these are grouped to act as two
highly segmented detectors. For example, the MuSR spectrometer at ISIS has some
64 detectors split into two banks of 32, while the new CHRONUS instrument has
606 individual positron counters [30]!

2.5.3 Sample mounting

Samples are mounted in such a way as to minimise the effect of mounting on the
resulting asymmetry spectra. Large samples are usually mounted on a backing
plate which will capture those few muons which do not implant in the sample.
Small samples will often be mounted in a flypast configuration, where the sample is
mounted on prongs with no backing; muons which do not implant in the sample
thus fly past. At a continuous muon source, a veto counter detects this and discounts
any positron detected as a result of this. At a pulsed source, a long flypast tube
allows those muons which miss or pass through the sample to decay far from the
positron counters. Small samples also sometimes require a quantity of degrader to
be placed in front of them, to slow the muons to the cusp of stopping before they
penetrate the sample, ensuring that they do not pass straight through.

When the sample is mounted on a backing plate, the materials most often used
are silver (Ag) and haematite (Fe2O3). Silver has very little effect on muons: it is
very weakly diamagnetic, does not superconduct under ordinary conditions, and
possesses very small nuclear moments (∼ −0.1µN). Thus, silver induces neither
precession nor depolarisation of the muon spin ensemble. Haematite is sometimes
used, for precisely the opposite reason: large, random internal magnetic fields all
but instantly depolarise any muons which land in it.
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Regardless of experimental geometry, samples are often wrapped in silver (Ag)
foil packets. In ZF and LF experiments, samples are normally mounted on silver
backing plates or prongs. In TF experiments, haematite is used preferentially to
remove a background non-relaxing cosinusoidal signal which would reduce the
sensitivity of the experiment to effects in the sample.

2.5.4 Experimental determination of background terms

Many relaxation functions contain a background term of the form Abg or Abge−λbgt

to account for a static or nearly-static offset common to all spectra. This often arises
from muons stopping in the silver sample holder or cryostat tails because a sample
either does not cover the full area of the muon beam, or is too thin to stop every
incident muon. This underlying background must be identified by evaluating the
constant α (in Eq. (2.8)) to find the full asymmetry, and then subtracting the relaxing
asymmetry arising from the sample, leaving the background. It is possible to extract
α by measuring a spectrum in transverse field mode when the sample is in a benign
phase, i.e. paramagnetic, non-superconducting, etc., and then adjusting α until the
spectrum is symmetric about the x-axis.

In addition to this, however, the background can also be affected by applied
or stray magnetic fields (which alter the paths of both incident muons and decay
positrons), detector efficiency, and so on. In practice, this means that backgrounds
can vary slightly during the course of an experiment. However, it is often unneces-
sary to precisely constrain the background term where the quantity of interest is an
oscillation frequency or a relatively fast relaxation. Consequently, unless a detailed
analysis of slow relaxations or relative amplitudes is to be performed, it is often
sufficient to use a phenomenological background term Abge−λbgt which is allowed
to vary slightly between experimental runs. Its magnitude is roughly constant, and
any relaxation associated with it is typically found to be ∼ 0.01 MHz; significant
deviation from these conditions means it is probably incorrect to have identified
this term as entirely background. If well-behaved, however, the significance of
the background term is limited, and its behaviour is largely ignored in this thesis.
For example, in Ba2NaOsO6 (see Sec. 4.3.1), the background relaxation contributes
around a third of the total signal in all runs, with a relaxation rate λbg ≈ 0.03 MHz,
which is typical and thus disregarded.
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Chapter 3

Dipole-field simulation

The criticism most often levelled at µ+SR is that the experimenter usually does
not know the muon site precisely. The electrostatic potential inside crystals is
difficult to evaluate and, even if it were known, the muon inevitably alters this
charge distribution wherever it comes to rest, making the problem harder still. One
possible solution in ordered magnetic materials is to reverse-engineer the problem
by working out the magnetic fields inside the crystal, and looking to see where
these match those observed experimentally. The parameters extracted empirically
are the muon precession frequencies, which are directly proportional to the local
field at the muon sites. If this local field is calculated at all sites in the crystal,
the places where the values are close to those actually observed give the locations
where muons might stop.

In this chapter, dipole field simulation is taken beyond this traditional application
of the technique. The observed frequency is not the only known parameter in this
problem: reasonable assumptions can be made about the kinds of sites where
a muon might stop, the sizes of the magnetic moments, or reasonable magnetic
structures. Given bounds on a subset of these, the limits on the others can be
extracted using Bayes’ theorem.

First, dipole fields for single dipoles and then arrays are explored in Sec. 3.1; we
will then examine Ewald summation as a method for rapidly calculating potentials
and fields in infinite crystals in Sec. 3.2.1, followed by the alternative of using a
Lorentz sphere of dipoles in Sec. 3.2.2; then, non-dipolar contributions to the field
at the muon site are examined in Sec. 3.3. These tools can then be used to perform
dipole-field simulations, which are explained in their traditional form in Sec. 3.4,
and with our novel Bayesian approach in Sec. 3.5. A brief overview of MµCalc,
my software for evaluating dipole fields, is given in Sec. 3.6, followed finally by
suggestions for future work in Sec. 3.7. Supplementary to this chapter, details
of the mathematics behind Ewald summation are given in Appendix A, and the
magnetic propagation vector formalism is introduced in Appendix B, providing a
very general way to describe periodic magnetic structures.
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3. Dipole-field simulation

Figure 3.1: The field of a single ideal dipole. Field lines run from north (the upper,
red pole) to south (the lower, blue one).

3.1 Dipole fields

3.1.1 The field from a single dipole

Gauss’s law famously states that it is not possible for single magnetic monopoles to
exist independently:

∇ · B = 0. (3.1)

Though there are no free magnetic charges, magnetic dipoles proliferate throughout
nature. They can be envisaged as tiny loops of current or as pairs of magnetic
charges with infinitesimal separation. The field around a magnetic dipole runs from
its north pole to its south, in a configuration similar to the familiar pattern observed
when iron filings are sprinkled in the vicinity of a bar magnet. The field of an ideal
dipole is shown in Fig. 3.1.

The dipole field can be expressed in vector notation,

B(r) =
µ0

4πr3 [3(µ · r̂)r̂− µ] , (3.2)

where µ0 is the permeability of free space; r is the position at which we wish to
evaluate the dipole field, with respect to a magnetic moment, a vector µ, at the
origin; and r̂ is the unit vector along the direction of r. Alternatively, the field can
be written in terms of the dipolar tensor,

Bα(r) = Dαβµβ

=
µ0

4πr3

(
3rαrβ

r2 − δαβ

)
µβ (3.3)
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3.1. Dipole fields
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Figure 3.2: The field from a point dipole of unit moment as a function of distance.
The blue, solid line represents the field perpendicular to the dipole axis, whilst the
red, dashed line shows the field along the axis, which is larger by a factor of two.
The graph is in units which are approximately appropriate for µ+SR, where a muon
will embed itself a few nanometres from magnetic moments of order a few Bohr
magnetons. The left-hand y-axis is thus the field expected per Bohr magneton, µB.
The right-hand y-axis shows the precession frequency which would be observed in
a muon spin-rotation experiment, obtained by multiplying the field by the muon
gyromagnetic ratio, γµ/2π = 135.5 MHz T−1.

where δαβ is the Kronecker delta, and the Einstein summation convention is applied.
The field strength falls off rapidly with distance, with Coulomb’s familiar inverse

square law being replaced by an inverse cube relationship. The field is also twice as
strong along the axis of the dipole as it is perpendicular to that axis. The strength
of the dipole field B is thus a function of the dipole moment µ, distance from it r,
and the angle made with its axis, θ:

B(µ, r, θ) =
µ0

4π

µ

r3

√
1 + 3 cos2 θ . (3.4)

A graph of this strength as a function of distance in units appropriate for µ+SR is
shown in Fig. 3.2.

3.1.2 The field from arrays of dipoles

The dipolar field experienced by a muon embedded in a crystal, Bdipole, is a function
of the muon site rµ and comprises the vector sum of fields from all dipoles inside
the crystal. Thus, we perform the sum

Bdipole(rµ) = ∑
i

µ0

4πr3 [3(µi · r̂)r̂− µi] , (3.5)
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3. Dipole-field simulation

where µ0 is the permeability of free space, and r = ri − rµ is the relative position of
the muon and the ith ion with magnetic moment µi. Two examples of dipole fields
summed over a number of dipoles in two dimensions are shown in Fig. 3.3.

The field distributions resulting from arrays of dipoles show two general features.
Firstly, when near to any given dipole, its field tends to dominate; in Fig. 3.3, the
field arrows are almost identical near any given spin in the grids of (b) or (c) as they
are close to the isolated spin in (a). Secondly, there are usually points of cancellation
at positions of high symmetry, where the total field from the dipoles sums to zero.
The impact on a muon is thus contingent on its site with respect to the magnetic
ions in a crystal: a muon sufficiently close to an ion will be largely indifferent to the
surrounding magnetic structure. However, since magnetic ions are often positively
charged and thus repel muons, the interaction of many dipoles is usually relevant
in dipole-field calculations for µ+SR.

Strictly, dipole sums should be evaluated over all magnetic moments in the
crystal, but the intractability of this sum for ~1023 moments inside an entire crystal
necessitates truncating it somehow. Two possible methods to make this sum
tractable are Ewald summation, explained in the next section, and use of Lorentz
spheres (see Sec. 3.2.2). Truncating the sum also gives rise to additional fields due
to finite-size effects (see Sec. 3.3.1).

In general, distributed spin-density requires treating this sum as an integral over
the space inside the crystal [31]. However, in many cases it should be acceptable
to approximate the moments as point dipoles attached to a given atomic site. This
approximation inevitably holds for the dipoles further from the muon, and remains
plausible for nearby dipoles in magnetic insulators where the magnetic ions are
small. A further assumption usually made is that the crystal is in a magnetic ground
state, and the moments are fully, statically ordered throughout the crystalline bulk.
In order to compare the fields extracted from these simulations, it is therefore
necessary to extrapolate from experimental data the muon precession frequency at
zero temperature.

3.2 Dipole sums

3.2.1 Ewald summation

Ewald summation [32] is a method of rapidly evaluating potentials, fields, etc. within
an infinite lattice. It offers significant reductions in the computing time required to
perform such calculations by deftly dividing labour between a sum in real space,
with charges or dipoles artificially screened to overcome long-range interactions,
and a sum in reciprocal space which accounts for those long-range interactions
neglected in the real-space sum. In the case of calculating the electrostatic potential
in crystals, Ewald summation allows evaluation of a sum which, in real space, is
potentially infinite in length. The reduced range of dipole-field interactions (∼ 1/r3

as opposed to ∼ 1/r) necessarily makes gains more modest. An overview of the
mathematics of Ewald summation is given in Appendix A. Ewald summation has
been previously used in dipole-field simulations for µ+SR, in e.g. Ref. 31.
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3.2. Dipole sums

(a)

(b)

(c)

Figure 3.3: Dipole fields emanating from a grid of magnetic dipoles in the plane
of the page. The large arrows are dipole moments. Small arrows show the dipole
field, pointing along its direction and coloured on a logarithmic scale according to
its magnitude; lighter colour indicates weaker field. Fields are shown from (a) a
single dipole; (b) a square grid of dipoles aligned ferromagnetically; (c) a square
grid of dipoles aligned antiferromagnetically. In both of the latter cases, points of
cancellation are evident.
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3. Dipole-field simulation

3.2.2 Lorentz spheres

An alternative method of summing dipolar fields [33] is to discard those moments
outside a relatively small Lorentz sphere centred at rµ, and subsequently apply
an appropriate correction, the Lorentz field BL, to account for fields from the
disregarded dipoles (see Sec. 3.3.1). The approximation is valid for dipole fields in
contrast to electrostatic potentials due to their more rapid attenuation with distance.

The size of sphere required to obtain an accurate answer can be obtained by
performing trial calculations at various cut-off radii until the value converges; such a
convergence test is illustrated in Fig. 3.4. This typically requires . 10, 000 moments
to converge to within less than < 1% of the true value (significantly higher precision
than that to which frequencies are commonly determined in µ+SR). This kind of
calculation can be completed in minutes or hours if evaluating fields at even a few
million points.

3.2.3 Ewald or Lorentz?

Calculating dipole fields using Ewald’s method is significantly more mathematically
complex than using Lorentz spheres, and ultimately it was the latter, simpler method
which was implemented in the software developed for this thesis. Though using
Lorentz spheres is in theory more computationally expensive, the speed penalty
paid for this choice is relatively insignificant in traditional dipole-field analyses,
as opposed to the Bayesian dipole-field analysis techniques described in Sec. 3.5.
In a typical conventional dipole calculation, fields might be evaluated at positions
on a grid comprising a few thousand points which is then examined by eye for
suitable field values. Calculating such a grid typically only takes a matter of
minutes, and thus is not a rate-limiting step in a µ+SR data analysis workflow. The
Bayesian technique, by contrast, usually entails calculating fields at tens of millions
of randomly-generated points in order to obtain a smooth curve, then repeating this
for a variety of different magnetic structures. This can take days on contemporary
desktop computers, and it would certainly be worth revisiting Ewald summation in
an attempt to optimise these calculations.

Future work examining how to constrain muon positions in Bayesian dipole-field
simulations should certainly attempt to do so using electrostatic potentials since they
would be expected to provide an estimate of minimum-energy positions for muons
to come to rest. As is shown in Appendix A, Ewald summation is almost essential to
achieving reliable convergence of electrostatic potential calculations within crystal
lattices, and could well therefore have a rôle in muon site determination.

3.3 Other magnetic fields at the muon site

A muon passively precessing in its local environment experiences a total magnetic
field comprising the vector sum of several different components [7]:

B = B0 + Bdipole + BL + Bdemag + Bhyperfine + Btrans + Bdiamag. (3.6)
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Figure 3.4: The convergence of values of magnetic field towards the true value in a
hypothetical primitive cubic antiferromagnet with increasing Lorentz sphere radius
R, in terms of the cubic lattice parameter a (the upper x-axis shows the number
of dipoles Ndipoles contained in a sphere of radius R). The ‘correct’ value of the
magnetic field is ascertained by performing a dipole-field calculation with a very
large Lorentz sphere with a radius R = 43a, and convergence towards that value
has been evaluated at 100 000 randomly-chosen points within the unit cell. A colour
map in (a) shows how rate of convergence varies with proximity to a spin, rµ–↑. Blue
points are closest to spins, with green intermediate and red farthest. Colour density
indicates the number of points, but the scale is non-linear to enhance visibility
of the regions of slow convergence. (b) Aggregate values: the central blue line
indicates the average error on the evaluated field values, whilst the grey shaded
region indicates plus or minus the root mean square error. Note that the y-axis
scale only extends to ±2%: field values rapidly converge to an error of < 1 % for
spheres with radii R & 5a.
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3. Dipole-field simulation

• B0 is any external field applied during the experiment.

• Bdipole is the dipole field resulting from a summation of all dipolar fields
inside the crystal, as described previously.

• BL is the Lorentz field, and arises from those dipoles outside the Lorentz sphere.

• Bdemag is the demagnetising field resulting from the finite size of the sample. It
is a contribution from those dipoles at the sample surface, and consequently
depends on sample shape.

• Bhyperfine is the contact hyperfine field arising from any spin density overlapping
with the muon site.

• Btrans is the transferred hyperfine field, due in metals to the Ruderman–Kittel–
Kasuya–Yosida (RKKY) interaction [34].

• Bdiamag is the diamagnetic field, and results from supercurrents screening ap-
plied magnetic field. It is thus specific to superconductors, and will not be
explored here.

3.3.1 Lorentz and demagnetising fields

In crystals without a net magnetisation, dipole-field simulations are significantly
simplified because parts of the crystal far from the muon do not exert a net field
on the muon site. The Lorentz and demagnetising fields are zero in such systems.
However, in many ferro-, ferri- or canted antiferromagnetic systems, magnetisation
M 6= 0 and it is necessary to include these corrections in order to obtain a correct
estimate of the field at the muon site.

The Lorentz sphere, Lorentz field and demagnetising field are shown in the
schematic diagrams in Fig. 3.5. First, in Fig. 3.5 (a), a Lorentz sphere of dipoles is
shown, representing the initial dipole sum as described in Sec. 3.2.2. The moments
outside a spherical void in an infinite crystal will result in an additional Lorentz
field BL proportional to and parallel with the net magnetisation M,

BL =
µ0M

3
, (3.7)

where µ0 is the permeability of free space. This effect is illustrated in Fig. 3.5 (b).
The demagnetising field Bdemag is a finite-size effect caused by moments at the

sample surface. A magnetic field runs between unpaired magnetic poles at the
surfaces, and will usually act to reduce the sample magnetisation; this tendency
to oppose the magnetisation gives rise to its name. The demagnetising field in a
planar sample is a particularly simple case, and is shown in Fig. 3.5 (c). Here, each
face is entirely composed of magnetic poles of the same sign, and field will run
from ‘plus’ to ‘minus’, creating a field precisely opposite the magnetisation. In
general, however, this field varies with sample shape and position inside the sample,
and is very difficult to calculate for an arbitrarily-shaped object (see e.g. Ref. 34).
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Figure 3.5: Schematic representation of the Lorentz and demagnetising fields. The
small black arrows represent individual atomic dipoles. (a) The Lorentz sphere
of dipoles used to calculate the approximate dipole field inside a sample. (b) The
dipoles outside the Lorentz sphere, extending to infinity, exert a Lorentz field
BL inside that sphere. (c) In real, non-infinite samples, surface effects result in a
demagnetising field, Bdemag, due to the effect of unpaired magnetic poles at the
sample surface. Here, in an infinite planar sample, north is represented by + and
south by −, and the demagnetising field runs from plus to minus, opposite to
the sample magnetisation. The + and − signs represent positive and negative
divergences of H created by the boundary of the sample magnetisation: since
∇ · B = 0, ∇ · H = −∇ ·M.
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3. Dipole-field simulation

However, it can be explicitly calculated for various special cases. For example, the
demagnetising field in ellipsoids is given by

Bdemag = −µ0NM , (3.8)

where N is the demagnetising tensor. If the magnetic field lies along one of the
ellipse’s principal axes, N can be diagonalised, giving

Nellipsoid =




Nx 0 0
0 Ny 0
0 0 Nz


 . (3.9)

In the doubly special case of a sphere, Nx = Ny = Nz = 1
3 , allowing the demag-

netising field to be expressed in terms of a scalar demagnetising factor N,

Bdemag = −µ0NM ,

where N = 1
3 for uniformly-magnetised spheres. A very long cylindrical rod orien-

tated in the z-direction exhibits Nx = Ny = 1
2 , Nz = 0, because if the magnetisation

points along the direction of the rod, the monopoles created will be at infinity, and
thus exert no influence. Similarly, for an infinite, flat plate perpendicular to z [as
shown in Fig. 3.5 (c)], Nx = Ny = 0, Nz = 1.

As well as systems where M = 0, the Lorentz and demagnetising fields can be
neglected in perfectly spherical samples because the two are equal in magnitude
but opposite in sign. In most cases, the two fields will cancel to some extent, and
an order of magnitude upper bound can be extracted by computing µ0M.

3.3.2 Hyperfine fields

Hyperfine fields result from the overlap between a muon wavefunction and any
spin-density at the muon site. The hyperfine field at the muon position Bhyperfine(rµ)
is given by [8, 35]

Bhyperfine(rµ) =
2µ0

3µB

[
n↑(rµ)− n↓(rµ)

]
, (3.10)

where µ0 is the permeability of free space, µB is the Bohr magneton, and n↑,↓(rµ)
are the densities of spin up and down electrons at the muon site, respectively.
Hyperfine fields have the potential to be very large: a muon overlapping with a
single, spin-up electron occupying a volume equal to the Bohr radius cubed would
experience a hyperfine field

Bhyperfine =
2µ0

3µB

1
a3

0
= 52.4 T, (3.11)

giving rise to a muon precession frequency ν = γµBhyperfine = 7100 MHz! The den-
sity of spin-polarised electrons overlapping with a muon will usually be somewhat
lower than this.
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3.4. Dipole-field analysis

In spite of this relatively simple definition, the hyperfine field is difficult to
ascertain. Knowledge of the local spin-density at the muon site firstly presupposes
knowledge of the muon site, which is itself usually unknown. Even then, con-
ventional calculations or experiment will usually ignore the perturbation from the
muon in the system; for example, measuring the spin-density throughout the unit
cell from neutron diffraction only gives information on the system in the absence of
a muon.

Some information about the hyperfine field can be gleaned from muon exper-
iments by measuring the Knight shift [8], which is the shift in muon precession
frequency from that expected in an applied field B0 in a sample in the paramagnetic
state. The magnetisation induced in the sample by the applied field manifests as an
imbalance in the density of spin-up and -down electrons at the muon site, resulting
in a hyperfine field which modifies the applied field. However, translating this
into the hyperfine field experienced in the ordered state is non-trivial. Firstly, the
Knight shift is affected by other components of the local field, such as the field from
the atomic dipoles associated with the degree of magnetisation induced. Secondly,
the ordering of the spins induced by applied field may differ in configuration or
direction from that in a state of spontaneous magnetic order. For example, the
magnetisation in spontaneous order will be along the material’s easy axis, whereas
the magnetisation in field will be parallel to that field. Further, in materials which
experience order other than ferromagnetic, the spins will not all align coparallel
with one-another as they do in field in the paramagnetic state, adding further
complexity to evaluating the likely spin-density at the muon site.

Hyperfine fields present the largest potential pitfall in analysis of local fields
at muon sites, because of this difficulty in evaluation and their potential to be
large. However, in magnetic insulators, and especially those where the magnetic
species are small in spatial extent, positively-charged and thus repulsive to muons,
and have a small and/or reduced magnetic moment, the quantity of spin-density
expected at the muon site would be small.

3.4 Dipole-field analysis

Dipole-field analysis has traditionally been used to isolate possible muon sites by
stipulating that the muon must stop at a position with a dipole field compatible
with the precession frequencies observed in experiment. First, dipole fields are
calculated at all positions on a grid inside the unit cell. Choosing a grid with
a prime number of elements in each direction limits the potential for sampling
artefacts. Then, fields which differ by more than some tolerance from those actually
observed in the µ+SR spectra are discarded, and positions are sought where the
correct field is observed, and the muon may plausibly stop due, for example, to
proximity to some negative ion.

Further information can be inferred by attempting to model the charge distri-
bution inside the unit cell, with sophistication ranging from examination of sites
with the correct field for proximity to negative ions [36]; to analogy with similar
structures [37]; to phenomenological attempts to map the electric potential inside
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3. Dipole-field simulation

the crystal [38, 39]; to attempts to evaluate the electronic structure of the crystal
with computational methods such as density functional theory.

The electronic structure of a crystal obeys the symmetry of the lattice and conse-
quently, if a muon stops in a given position, it should stop in all crystallographically-
equivalent positions. This provides another opportunity to interrogate dipole-field
simulations because many transitions to long-range magnetic order will create a
magnetic unit cell larger than the crystallographic one—in the language of Ap-
pendix B, they will have a nonzero magnetic propagation vector. Thus, it is possible
for crystallographically-equivalent sites to be magnetically-inequivalent and, were
muons to stop in such a site, multiple frequencies would be observed. Thus, when
performing dipole-field simulations, it is important to check that the proposed
muon site does not give rise to any additional frequencies not present in the A(t)
spectra [37]; or, conversely, the presence of multiple frequencies in some materials
can be explained by this effect [40, 41].

The largest limitation of dipole-field analysis in this form is that, for it to be
effective, the magnetic structure of the material must be known. If it is not, the
muon position will be wrong, and quantifying the uncertainty is difficult. Because
the magnetic structure is assumed, this process for determining the muon site is
also circular, and the muon site does not in itself give any information about sample
properties. Its use is as a (binary) consistency check: the absence of appropriate
fields in plausible sites would be relatively solid evidence that the assumed magnetic
structure was in error.

It is, in fact, quite common for the magnetic structure to be unknown. This
can either be because the muon results precede studies to determine the magnetic
structure (e.g. using neutron scattering), or because such studies would be difficult
due to ferromagnetism, small moments, large concentrations of hydrogen etc.
Changing magnetic structures can often result in a dramatic alteration of muon
precession frequency at a given site: in the most extreme case, the muon could sit
at a point of cancellation in an alternative structure, having previously occupied a
site of nonzero field. On top of this, moment sizes are often not known precisely,
and muon precession frequency scales with these. It is to quantify the uncertainty
resulting from unknown muon sites and ill-constrained magnetic structures that we
approach dipole-field analysis with Bayesian inference.

3.5 Bayesian dipole-field analysis

Bayesian inference is a method which allows calculation of what can be reasonably
deduced given what is actually known. This section will explore its application to
combining dipole-field simulation with µ+SR results. First, we examine probability
distributions of dipole fields, taking specifically the example of antiferromagnet
MnO; then Bayes’ theorem is introduced; and finally the two are combined into
Bayesian dipole-field analysis.
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Figure 3.6: Dipole-field distributions inside a number of model systems, after Ref. 42.
Moments on a simple cubic lattice are aligned (a) ferromagnetically along the crystal
axis [001]; (b) antiferromagnetically with propagation vector k0 = (π, π, π) with
moments pointing along [001]; (c) antiferromagnetically with k0, moments along
[011]; and (d) antiferromagnetically with k0, moments along [111].
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3.5.1 Dipole-field distributions

Given that the muon site is a priori unknown, we might assume that it can stop in one
of many possible locations inside a crystal. One possibility is to relax all assumptions
about possible muon sites, and to assume that the muon stops everywhere [42]. This
might actually be appropriate in some physical systems; for example, in complex
single-molecule magnets where there are many hundreds of atoms per unit cell,
muons may stop in a large number of magnetically-inequivalent muon sites. Graphs
in Fig. 3.6 show the probability density function (pdf) of dipole fields in a variety
of different magnetic structures on a simple cubic lattice. The x-axes are in terms
of the scaled frequency ν̃ =

(
γµa3/2πµ

)
B, to facilitate comparison with general

experimental data. Common features include the distributions’ asymmetry; a ν̃−2

tail, corresponding to those muons stopping very near to a magnetic ion; and
sharp Van Hove singularities [43], with positions corresponding to field values at
points of high symmetry. These features are analogous to those in the magnetic
field distributions found in the superconducting vortex lattice, described briefly in
Sec. 2.4.2.

In materials with a unit cell containing fewer atoms, the assumption of uniform
muon distribution is problematic. Instead, muons are likely to stop at a small
number of sites of high electron density, and often gravitate towards interstitial
positions to minimise their electrostatic energy. It is then rational to evaluate the
dipole-field distribution over a constrained set of sites using known or likely muon
positions. An obvious constraint is to add a cut-off radius around positive ions
within which muons will not stop. The effect of this to first order is often to truncate
the ν̃−2 tail, because many magnetic centres are cationic. As the cut-off is increased
in materials containing other positive species, there will be more complex effects on
the pdf contingent on the location of other positive ions relative to the dipole-field
distribution. It is also sensible to apply a cut-off proximity to negative ions, as there
will come a point when electrons cannot successfully screen the muon from the
effects of the positive nuclear charge.

A simple constraint in oxides is that muons usually stop around 0.1 nm from
an O2− ion [44, 45]. Thus, we might examine sites where rµ+–O = 0.10(01) nm (this
approach is used in Ba2MOsO6 in Chapter 4). Alternatively, the muon site may be
able to be determined directly from data taken above the transition to long-range
magnetic order, e.g. by the examination of Fµ dipole–dipole oscillations in muon
spectra (an example of this in the [M(HF2)(pyz)2]X series of molecular magnets is
discussed in Chapter 6). Another possibility is that, in simple structures the muon’s
position can be assumed to be at mid-points between ions identified by inspection;
for example, in materials with the rock salt structure, muons tend to stop at the
body-centre of the simple cubic lattice, placing them equidistant between attractive
negative and repulsive positive ions [37, 46].

It is important to emphasise that these distributions are not to be identified with
a distribution of fields at the muon site. (Dipole-field simulations can be used in
conjunction with calculations of likely muon thermal ellipsoids to identify on-site
field distributions [38], but this is not investigated here.) The extent of the muon
wavefunction is likely to be comparable with that of a proton in a similar material
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O

Mn

Figure 3.7: Schematic structure of MnO in the magnetically ordered phase. The
structure shown is a face-centred cubic simplification of the actual structure (see
text). Arrows indicate the direction of the Mn spins (along [1 1 2̄] in this crystal
system), while dotted lines indicate the [1 1 1] planes of ferromagnetism.

MnO

Fm3̄m
a = b = c = 0.4426 nm [47]

α = β = γ = 90°
Mn2+ @ (0, 0, 0), µ = 5.65µB [48]

O2− @ (0.5, 0, 0)
m1 = µ√

6
(1, 1,−2), m2 = µ√

6
(−1,−1, 2) [48]

k = (π,π,π)

Table 3.1: Manganese(II) oxide structural parameters for a simplified version of the
structure based on a face-centred cubic lattice. The basis vector m1 applies to the
Mn at (0, 0, 0), whilst m2 concerns the symmetry-equivalent Mn sites at (0, 0.5, 0.5),
(0.5, 0, 0.5) and (0.5, 0.5, 0); the propagation vector k applies to all Mn atoms.

and therefore will tend to be relatively small, especially at low temperatures. It is
therefore usually relatively unproblematic to approximate muon sites as definite
and point-like: possibly small in comparison to variations in the dipole field; almost
certainly small compared to hypothetical 0.02 nm-thick spherical shells around
negative ions.
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3.5.2 An example: MnO

Manganese(II) oxide is considered an archetypal antiferromagnet. In 1949, neutron
scattering from MnO was used to detect the first incontrovertible experimental
evidence for antiferromagnetism [47]. It comprises S = 5

2 Mn2+ ions and S = 0 O2−

ions arranged in a rock salt structure. Below TN = 118 K, the material enters a state
of long-range magnetic order; the size of the unit cell doubles as the Mn moments
antialign, with ferromagnetic sheets of Mn along [1 1 1] planes. A simplified picture
of the MnO magnetic unit cell is shown in Fig. 3.7, and the parameters associated
with this approximate structure can be seen in Table 3.1.

With hindsight, MnO is not as perfect an archetype as might be supposed.
Rather than being a Heisenberg antiferromagnet on a cubic lattice, the transition to
long-range magnetic order is associated with a degree of structural distortion—a
stretching along the [1 1 1] direction in the original stucture—which reduces the
symmetry to rhombohedral [49]. Neutron scattering allows the moment direction
to be constrained; the Mn spin vectors lie within the ferromagnetic planes [49].
Modelling recent high-resolution total scattering neutron data with reverse Monte
Carlo simulations suggests further small deviations from an idealised structure,
reducing the symmetry to monoclinic, and suggesting that the moment direction
lies along the [1 1 2̄] direction specifically (again referred to the simplified face-
centred cubic structure) [48]. Even above the transition, MnO behaves somewhat
anomalously; there is good evidence [50] that it exhibits significant spin correlations
up to ∼ 4.5TN, providing further indications that this is not such a simple system
as is often assumed.

However, dipole-field simulations on this material do go some way to providing
a self-consistent picture. Zero-field µ+SR experiments [51] find a single muon
precession frequency of ν = 154 MHz, suggesting B = 1.14 T. From the Knight shift
in the paramagnetic phase [52], the hyperfine field is estimated to be Bhyperfine =
−0.48 T. Since other components of the local field would be expected to be zero, we
estimate that the dipole field being sought is Bdipole = 1.62 T, equivalent to a muon
precession frequency of ν = 220 MHz.

The first result is that dipole-field distributions are relatively insensitive to the
slight changes in the crystal structure. This is illustrated in Fig. 3.8, where the
dipole fields arising from the face-centred cubic, simplified structure are compared
with the more precise monoclinic structure found in Ref. 48. The reduction in
symmetry smooths over some of the Van Hove singularities, and moves others:
given their intimate relationship with positions of high symmetry [42], this is
perhaps unsurprising. The high-field tail, corresponding to muons which stop near
a Mn2+ ion, is shared by both. The shaded region on the graph corresponds to
ν = 220 MHz: even without any constraints on muon position, this appears to be
close to the most likely frequency to be observed.

The next stage of the analysis is to constrain the muon site to plausible positions.
The results of this process are shown in Fig. 3.9. Adding the constraint that the
muon should sit 0.09 ≤ rµ–O ≤ 0.11 nm from an oxygen restricts possible positions
to around 11 % of the MnO unit cell volume. The main effect of this restriction is to
reduce the number of muon sites particularly near to a manganese spin site, which
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Figure 3.8: The dipole-field distributions inside the unit cell of MnO with two
different crystallographic structures. The face-centred cubic structure, space group
Fm3̄m, is denoted by the dashed blue line, whilst the monoclinic structure, space
group C2, is denoted by the solid black line. The green shaded region shows the
dipole field actually observed, ν = 220 MHz.

significantly squashes the pdf’s high-field tail. Adding the constraint that the muon
must also sit far from a manganese site (rµ–Mn > 0.17 nm) restricts it to 2.5 % of the
unit cell. This eradicates the high-field tail entirely, and rather radically changes
the shape of the distribution. Indeed, the most likely muon precession frequencies
from this set of constraints lie in two peaks either side of that actually observed!
A final simple method of identifying likely muon sites is to look for interstitial
sites by constraining the muon to lie far from all atoms in the structure: setting
rµ–any > 0.17 nm leaves 5 % of the structure available for occupation by muons,
and creates a slightly different distribution, again peaked around the observed
precession frequency.

Though this picture of the MnO magnetic and crystal structure therefore forms
a consistent narrative when coupled with the muon measurements of total local
field and hyperfine field, this story is not tightly constrained. The distribution
of precession frequencies stretches from 50 to 350 MHz even when the possible
muon positions are restricted to the interstitial 5 % of the unit cell. This means it is
possible to neglect the hyperfine contribution entirely and still conclude that the
muon stops at this plausible interstitial site, as appears to have been erroneously
performed in Ref. 53. The large distribution of fields at the likely sites will almost
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Figure 3.9: Dipole-field distributions in the unit cell of the full, low-symmetry
crystal structure of MnO with a variety of different restrictions on muon position.
The dotted black line, rµ unconstrained, assumes that the muon can stop anywhere,
and is identical to the appropriate line in Fig. 3.8. The solid red line, 0.09 ≤ rµ–O ≤
0.11 nm, represents those points where the muon is approximately 0.1 nm from an
oxygen ion. Adding the further constraint that the muon must stop far from a
manganese, rµ–Mn > 0.17 nm, gives rise to the third, purple dashed line. Finally,
interstitial sites are identified by choosing those positions where the muon is far
from all atoms, rµ–any > 0.17 nm, giving the dashed blue line.

certainly persist for other potential moment orientations, which makes this a poor
constraint on magnetic structure too. The consistency of the dipole-field simulation
with neutron scattering data thus provides some corroboration for both, but this
analysis also indicates some of the potential shortcomings of the technique: the
large possible effect of hyperfine fields, and the potential for dipole fields to provide
only a weak constraint on the system under study.

3.5.3 Bayes’ theorem

Bayes’ theorem [54, 55] is a mathematical relationship allowing inversion of condi-
tional probabilities. A conditional probability is one such as P(A|B), the probability of
an event A occurring given that event B has occurred. The joint probability P(A∩ B)
is the probability of A and B both happening, and is given by the probability of B
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occuring, multiplied by the probability of A occurring given that B did,

P(A∩ B) = P(B)P(A|B). (3.12)

The reverse,
P(A∩ B) = P(A)P(B|A), (3.13)

also holds. Now, in the case of some set of mutually-exclusive events {Ai} such that

∑
i

P(Ai) = 1, (3.14)

we can write the probability of some other event B as

P(B) = ∑
i

P(B|Ai)P(Ai). (3.15)

Thus, given a hypothesis H, it is usually possible to compute the likelihood of a
given experimental observation O given the truth of that hypothesis, i.e. P(O|H).
However, given that in science our hypotheses must bend to reality rather than
the other way around, we actually wish to evaluate the probability of a hypothesis
being true given the known empirical evidence, i.e. P(H|O). It is in this context that
we wish to reverse conditional probabilities, and thus we turn to Bayes’ theorem.

Bayes’ theorem expresses the probability of an event A given the occurence of
an event B as

P(A|B) = P(B|A)P(A)
P(B)

. (3.16)

It is obtained simply by setting Eq. (3.12) equal to Eq. (3.13). Here, P(A) is the
prior probability or the prior, and represents the probability of A occurring without
knowledge of the occurrence or otherwise of B. The derived quantity P(A|B) is
then the posterior probability. P(B) can be considered a normalising constant, taking
into account the likelihood of B occurring at all.

The theorem’s applications are diverse and its results often counter-intuitive:
it has been turned to assessing the usefulness of medical screening; to provide a
rigorous method of combining evidence in criminal trials [56]; as an alternative to
potentially misleading significance tests [57]; and may even provide a quantitative
formulation of the scientific method itself.

To take the example of medical screening, imagine we have a test for a medical
condition with false positive and false negative rates which are both 1 %. The
probability that is sought is then of A (having the disease) given B (a positive
result on the test). Let us consider two scenarios: a common disease suffered by
P(A) = 5 % of the population, and a rare condition afflicting only P(A) = 0.1 %.
The probability of receiving a positive result on the test is then the probability of
being correctly identified as having the condition, or incorrectly identified as not
having it,

P(B) = P(B|A)P(A) + P(B|not A)P(not A). (3.17)

Thus, for the common disease P(B) = 0.99× 0.05 + 0.01× 0.95 = 0.059, whilst
for the rare disease P(B) = 0.99× 0.001 + 0.01× 0.999 = 0.01098. Finally, Bayes’
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theorem gives P(A|B) = 84 % for the common disease, but only P(A|B) = 9 %
for the rare one: given a positive test result for a given condition, a patient is
significantly more likely to have a common condition than a rare one. This might
seem counter-intuitive because in both cases the test is extremely and equally
accurate. However, when the error rate becomes comparable with the prevalence of
what is being tested for, probability dictates that mistaken test results will begin
to outnumber actual sufferers. This does not totally invalidate medical testing for
uncommon diseases, however, as a 9 % likelihood of actually having the disease is a
significant increase in certainty over that possessed before the test was carried out.

When Bayes’ theorem is employed in the task of testing scientific hypotheses, it
implies that extraordinary claims require extraordinary evidence. The less likely
your hypothesis is a priori, the stronger the corroboration required to prove it to a
given level of certainty. The challenge is to provide a reasonable estimate of these
a priori probabilities (i.e. the priors) in this case. For a sufficiently fundamental
hypothesis, this could entail a complex metaphysical problem.

It is also possible to reformulate Bayes’ theorem for continuous probability
distributions. Suppose we wish to extract the probability density function fX of a
random variable X given an observed value of an experimental parameter Y, itself
a continuous random variable with pdf fY,

fX(x | Y = y) =
fX(x) · fY(y | X = x)

fY(y)
, (3.18)

where dividing by fY(y) ensures that the resulting pdf integrates to unity.

3.5.4 Application to dipole-field simulation

In a sample under study with µ+SR, we can combine those facts already known
about the system with the µ+SR results using Bayes’ theorem to infer further
information. The crucial element in this kind of analysis is to be rigorous in
assuming prior probabilities.

The most unambiguous information extracted by a muon experiment is the set of
one or more precession frequencies extrapolated to zero temperature, {νi(T = 0)},
which correspond to magnetic fields which are present at some position inside
the sample. Positions are generated at random inside the unit cell to minimise
any sampling artefacts, and those which do not satisfy muon site constraints are
discarded. Dipole fields at these positions are evaluated and stored, and finally
gathered into a histogram, representing a pdf of potential frequencies. If the
magnetic structure is already known, this acts as a consistency check. However, if
aspects of the magnetic structure are unknown, Bayes’ theorem can be employed to
narrow the possibilities. The pdf can be recalculated for variant structures and the
likelihood of obtaining the observed frequencies can be calculated. The structure in
which it is most likely that the observed frequencies be seen is then the most likely
structure. The prior probabilities chosen should reflect bounds on quantities known
from other experimental techniques, or the wider body of scientific knowledge. For
example, the magnetisation direction may be known from other measurements, and
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so only moments orientated along this axis need be investigated; or if measuring
moment size in an S = 1

2 system, it would be extremely surprising to find µ = 10µB,
and a prior pdf f (µ) should reflect this.

Obtaining bounds on quantities of interest, or extracting an approximate shape
of a pdf, may only require dipole fields to be evaluated at a few thousand points
in the unit cell. Evaluating a smooth, well-resolved pdf complete with Van Hove
singularities and so forth can require tens or hundreds of millions of points to be
evaluated (and, given the inherent unknowns in the problem, such calculations may
well be spuriously precise). Though this method has been adopted in this thesis, it
is possible that smoothing lower-resolution pdfs, perhaps by convolution with a
function representing other unknowns, would provide a truer representation of the
uncertainties in these problems.

The technique is most easily illustrated with examples, and as such a sample
Bayesian calculation of the known magnetic moment in manganese oxide follows.
Other examples include moment size and orientation in Ba2MOsO6, which are esti-
mated using this technique in Chapter 4, and moment size in the [M(HF2)(pyz)2]X
series of molecular magnets, which is derived in Chapter 6.

3.5.5 Bayesian analysis of MnO

We can apply the Bayesian dipole-field analysis technique to estimate the moment
size in manganese oxide. The experimentally-observed quantity is the muon
precession frequency ν = 220 MHz. We then make the plausible assumption that
the muon is likely to stop in an interstitial position, as defined by rµ–any > 0.17 nm.
Given that we are now taking the moment size as unknown, the pdf of dipole fields
is re-evaluated in units of MHz/µB, giving rise to a new pdf f (ν/µ). (Since dipole
fields scale with the size of the moment, this is simply the pdf of dipole fields
shown in Fig. 3.9 appropriately scaled.)

Since ν is obtained from experiment, what we would like to know is g(µ|ν), the
pdf of manganese moment µ given the observed ν. This can be obtained from our
calculated f (ν/µ) using Bayes’ theorem [55], which yields

g(µ|ν) =
1
µ f (ν/µ)´ µmax

0
1
µ′ f (ν/µ′)dµ′

, (3.19)

where we have assumed a prior probability for the manganese moment that is
uniform between zero and µmax. We take µmax = 10µB, although the results are
insensitive to the precise value of µmax as long as it is reasonably large. In fact, we
evaluate

g(µ|ν) ∝
ˆ ν+∆ν

ν−∆ν
f (ν/µ)dν , (3.20)

where, in the absence of any quantitative uncertainty estimation in Ref. 51, ∆ν is
a 5 % error on the extracted frequency. The relevant pdfs are shown in Fig. 3.10;
first, the muon precession frequency per unit magnetic moment, and secondly
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Figure 3.10: A Bayesian derivation of the magnetic moment µ on the manganese
ions in MnO. (a) The pdf of observed muon precession frequency ν per unit moment
µ. (b) The resulting probability distribution of µ, with the value of µ = 5.65µB
marked.

the magnetic moment calculated given the experimentally-derived frequency ν =
220 MHz. The peak of this probability distribution clearly lies near the µ = 5.65µB
marked: given that the pdf of muon precession frequency shown in Fig. 3.9 peaks
at the experimentally-derived frequency given an assumed µ = 5.65µB, this result
is unsurprising.

3.6 MµCalc

I have developed MµCalc, a piece of software for dipole-field analysis. It is written
using Python [58], a high-level, cross-platform scripting language, which allows
it to be run without compilation on Linux/Unix, Windows and Mac systems.
MµCalc combines a text-based user interface with a 3D display window, making
visual verification of crystal and magnetic structures, as well as generated dipole
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fields, simple for users. The program supports all space groups on the Bilbao
crystallographic server [59], and can import crystal structures in the widely-used
CIF (Crystallographic Information File) format [60]. Magnetic structures are input
using the powerful magnetic propagation vector formalism described in Appendix B
which allows any periodic magnetic structure, from a simple antiferromagnet to a
complex, incommensurate spin-density wave, to be described compactly. MµCalc
can then be used to perform convergence testing, as outlined in Sec. 3.2.2, before
calculating dipole fields using the Lorentz spheres of dipoles at specified points,
on a grid, or at randomly-generated points, with the ability to filter by muon site
constraints relative to atoms in the crystal structure. Frequency histograms can
then be exported, and Bayesian analysis performed. It is also possible to export
crystal structure and dipole-field images in POV-Ray [61] format, for rendering
publication-quality 3D graphics. Atom sizes, colours and transparencies can be
varied, bonds added, and extraneous parts of the structure can be deleted for clarity.

MµCalc has been used for all dipole-field calculations performed in this thesis,
and has also been used to produce all crystal structure diagrams included herein.
Source code, installation notes and documentation are available online [62].

3.7 Future work
Bayesian dipole-field techniques post-dated much of the development of MµCalc,
and certain applications could enjoy large computational speed increases if the
program were redesigned with these Bayesian calculations in mind. For example, in
Chapter 4, the Ba2MOsO6 system is explored in which a net ferromagnetic moment
could arise from either true ferromagnetism or a canted antiferromagnetic structure.
To investigate this, initially parallel moments were rotated whilst keeping the net
ferromagnetic moment constant (for full details, see Sec. 4.3.2). This procedure
was computationally expensive, because each incremental change in the structure
required repeating the vector sum across a large Lorentz sphere of dipoles. However,
a dipole-field program which initially calculated the dipolar tensor and stored its
values could calculate the effects of changing the magnitude and/or direction of
moments without repeating the computationally-expensive summation stage. This
tensor would need to be calculated for each sublattice of moments intended to
change in value independently. It may be useful to use the tensor evaluated in
spherical polar coordinates, allowing the moments to be specified in terms of size
and direction.

Another possibility would be investigating the consequences of different muon
site constraints. All work in this thesis assumes simple spherical shells of potential
muon sites at appropriate distances from negative ions, with solid spheres of
exclusion around positive ones. Making the boundaries fuzzier, or somehow
weighting the likelihood by electrostatic potential, might yield improved results. It
would be important when pursuing this to calibrate against results in systems with
known magnetic structures, in order that the resulting technique had empirical
validity and not just alluring complexity.
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(a)

(b)

(c)

Figure 3.11: Screenshots showing MµCalc’s three main menus. (a) The crystal and
magnetic structure menu, shown along with the 3D Visual Python window, which
displays the structure entered: in this case, ferromagnetic Ba2NaOsO6. (b) The
dipole-field calculation menu. The 3D window here shows the volume where
a muon may sit if constrained to lie approximately 0.1 nm from an oxygen ion
in Ba2NaOsO6. (c) The visualisation menu allows detailed customisation of the
appearance of crystal structures to create high-quality figures. The 3D window in
this case shows the images of the Ba2NaOsO6 structure seen in Fig. 4.1. Images show
the program running on Ubuntu Linux 10, Windows 7 and Mac OS X, respectively.
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Chapter 4

Low-moment magnetism in
Ba2MOsO6 (M = Li, Na)

Metal oxides containing 5d transition metal ions provide a wealth of novel magnetic
behaviour in which orbital, charge and spin degrees of freedom play a rôle. The
physics of the 5d transition metals differs from their more familiar 3d counterparts
in a number of ways. Firstly, the 5d orbitals are significantly larger in spatial extent,
allowing them to behave more like free electrons in many systems and reducing
the effect of electron correlations. Moreover, spin–orbit coupling in 5d ions is
larger because of their higher atomic number (with atomic number Z, spin–orbit
interaction scales as Z4 [34]). In 3d transition metal compounds, the spin–orbit
coupling is typically rather smaller than the crystal-field splitting, but the larger
spin–orbit interaction in 5d oxides contributes to a substantially different balance
between energy scales.

In this context, osmium compounds provide a number of interesting examples.
Osmium has oxidation states ranging from Os4+ (5d4) to Os7+ (5d1). The behaviour
of compounds such as OsO2, SrOsO3 and BaOsO3 (all containing Os4+) is dominated
by the large spatial extent of the orbitals; the electrons are delocalised, giving rise
to Pauli paramagnetism [63]. On the other hand, the much smaller Os7+ ion gives
rise to rather different behaviour: double perovskites of the form Ba2(Na, Li)OsO6
[containing Os7+ ions arranged on a face-centred cubic (fcc) lattice] exhibit Mott-
insulating, S = 1

2 local-moment behaviour [64, 65]. The insulator barium sodium
osmate (Ba2NaOsO6) has drawn particular attention [66] due to its seemingly
contradictory combination of negative Weiss temperature (≈ −10 K) and yet weak
ferromagnetic (FM) moment (≈ 0.2µB/formula unit) below Tc ≈ 7 K. This contrasts
with the isostructural Ba2LiOsO6, which has both a negative Weiss temperature and
no ferromagnetic moment [64, 67]. The apparent contradiction in Ba2NaOsO6 raises
the possibility that it is a canted antiferromagnet, although first-principles density
functional theory electronic structure calculations indicate that a ferromagnetic
state has lower energy [68]. The large hybridisation between the osmium 5d
and oxygen 2p orbitals leads to a very large crystal-field splitting (several eV)
between the eg and t2g bands. It has been suggested that the low moment arises
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from a partial cancellation of orbital and spin angular momenta in the occupied
spin-up t2g band [68]. An alternative mechanism [69] involves the frustration of
both the antiferromagnetic (AFM) interactions and the orbital ordering by the fcc
lattice, resulting in a delicate balance of interactions which favours ferromagnetism
for Ba2NaOsO6, but antiferromagnetism for Ba2LiOsO6. The high-temperature
paramagnetic moment µeff ≈ 0.6µB in Ba2NaOsO6 is significantly lower than the
1µB which would be expected for a free electron, and is thus indicative of substantial
spin–orbit coupling [66]. The magnetic ground state of Ba2MOsO6 is thus a matter
of significant speculation.

In view of these competing explanations, further experimental data which can
distinguish between different magnetic configurations are desirable. An obvious
solution to this would be to solve the magnetic structures by neutron diffraction,
but these materials are not amenable to this for several reasons: firstly, osmium is a
relatively strong absorber of neutrons; secondly, there is a significant probability
that the M = Na compound is a ferromagnet, meaning that the magnetic peaks and
structural Bragg peaks would coincide; and thirdly, the ordered moment is likely
to be low, as we shall see, which would make detecting magnetic order difficult,
especially if it is indeed a ferromagnet. Muon-spin relaxation provides a local probe
of magnetism in Ba2MOsO6, and the novel Bayesian technique explained in Sec. 3.5
allows bounds to be extracted on moment size and configuration. The muon data,
in combination with measured magnetisation, are consistent with the development
of long-range FM order with a reduced moment in Ba2NaOsO6, and a reduced
moment is also likely for Ba2LiOsO6.

The work comprising this chapter has been submitted for publication, and is
available as a preprint as indicated in Ref. 70.

4.1 Structure and magnetisation

The double-perovskite structure of Ba2NaOsO6 is shown in Fig. 4.1; note that
sodium and osmium ions inhabit alternate oxygen octahedra. The structure is
described by the space group Fm3̄m, with cubic lattice constant a = 0.828 70(3) nm.
Ba2LiOsO6 is isostructural, slight differences arising from the fact that Li+ is smaller
than Na+, and thus the size difference between the Li and Os octahedra is somewhat
less pronounced. The lattice constant is reduced to a = 0.810 46(2) nm. Full details
of both structures can be found in Ref. 64.

Magnetisation measurements using a SQUID magnetometer are shown in
Fig. 4.2, and are consistent with earlier work [64, 66]. Ba2NaOsO6 exhibits a
magnetisation curve typical of a ferromagnet with a small amount of hysteresis,
approaching a saturation value of ≈ 0.2µB/formula unit, but still displaying a
slight upward trend in magnetisation even at 7 T. This does not rule out canted
antiferromagnetism, as the initial part of the curve could represent the alignment of
net FM domains whilst the slow, near-linear increase in magnetisation represents a
slow canting of spins in those domains as field is increased.

Ba2LiOsO6 initially displays the linear magnetisation typical of a slowly-canting
antiferromagnet, but a spin-flop transition at around 5.5 T with obvious hysteresis is
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Figure 4.1: Double-perovskite crystal structure of Ba2NaOsO6, comprising alternat-
ing OsO6 octahedra (top left and bottom right) and NaO6 octahedra, with barium
ions occupying the remaining space.
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Figure 4.2: Magnetisation measured at 2 K in a SQUID magnetometer for
Ba2MOsO6. Error bars are shown, but in most cases are smaller than the marker
size.
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Figure 4.3: Magnetisation measured at 4 K in pulsed field for Ba2LiOsO6, calibrated
against the SQUID magnetisation data shown in Fig. 4.2. Data from a 45 T shot
(dashed line) are noisier than those from a 25 T shot (solid line) but show no
evidence for additional magnetic transitions.

also evident. Pulsed field magnetometry on Ba2LiOsO6 suggests that this compound
does not reach a saturated magnetisation value even at 45 T, and also reveals no
additional transitions up to this high field (see Fig. 4.3).

4.2 Experimental methods

Crystallites of Ba2NaOsO6 and Ba2LiOsO6 were grown using a flux method [64].
Powders of Os (99.8%), Ba(OH)2·8H2O (98%) and high-purity NaOH·H2O (99.996%)
or LiOH (99.995%) and KOH (99.99%) were mixed in the ratio 1:2.1:300 or 1:2.1:140:75
respectively. These mixtures were each placed in an alumina crucible inside a thick
quartz tube which was inserted into a 600 ◦C pre-heated tube furnace where it was
held for 3 days. The furnace was then rapidly cooled to room temperature and
small single crystals were harvested from each crucible.1 The muon experiments
used a very large number of these crystals without alignment. The measurements
were performed using the GPS instrument at PSI. Samples were wrapped in 25 µm
Ag foil and mounted on a flypast holder comprising two silver prongs.

4.3 µ+SR results

4.3.1 Ba2NaOsO6

Typical zero-field µ+SR spectra measured above and below the magnetic transition
for Ba2NaOsO6 are shown in Fig. 4.4. Two damped oscillations are visible at low
temperature, demonstrating the existence of a transition to a state of long-range

1Samples studied in this chapter were synthesised by D. Prabhakaran.
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Figure 4.4: Muon data above (T = 8 K) and below (T = 3 K) the magnetic transition
at Tc = 6.8 K for Ba2NaOsO6, along with fits to Eq. (4.1) for the data below the
transition, and a Gaussian relaxation for data above.

magnetic order. Data below the transition were fitted to

A(t) =

[
2

∑
i=1

Aie−λit cos (2πνit) + A3e−λ3t

]
+ Abge−λbgt, (4.1)

representing two oscillatory components, labelled 1 and 2; a fast-relaxing term,
labelled 3, to account for the rapid initial depolarisation; and a slow-relaxing term,
labelled bg, which accounts for the background arising from muons which stop
in the silver sample holder or cryostat tails and the 1

3 of muons which stop inside
the sample with spins parallel to the local magnetic field. The frequencies of
the two oscillatory components were initially left free but, after observing that
they varied in proportion with one-another, they were held in fixed proportion
P2 = ν2/ν1 during fitting. The existence of two oscillatory components most likely
indicates two crystallographically-similar muon sites, perhaps one nearer to the
magnetic Os ion and the other nearer to the non-magnetic Na ion. The ratio of
the probabilities of stopping in the two oscillating states A1/A2 = 0.19± 0.02, and
A3/A2 = 0.92 ± 0.01. Further, ν1(T → 0) = 3.9(1)MHz and P2 = 0.40 ± 0.05.
The relaxation rates λ1 ≈ 4 MHz and λ2 ≈ 2 MHz do not vary significantly as a
function of temperature, whilst λ3 decreases from 1.6(1)MHz at 1.5 K to zero at
the transition temperature Tc. The background term varies somewhat between
experimental runs, but its amplitude and relaxation rate remain approximately
constant, with Abg/A2 ≈ 0.75 and λbg ≈ 0.03 MHz.

Since the muon-precession frequency is proportional to the local magnetic field,
which is itself proportional to sample magnetisation, the precession frequency ν(T)
acts as an effective order parameter for the system. The temperature evolution of
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Figure 4.5: The frequency ν(T) extracted from fits to A(t) spectra as a function of
sample temperature T, along with fits to various models. Data are only shown
for the larger frequency ν1 because ν2 was held in fixed proportion during fitting.
The mean-field fit follows Ref. 71 and the Landau-type parameterisation of the FM
equation of state is due to Kuz’min [72].

this order parameter thus allows some insight into the nature of the magnetically-
ordered state. This evolution is shown in Fig. 4.5, along with fits to various different
parametrisations. The temperature dependence of ν(T) fitted rather poorly to an
analytic expression for a mean-field S = 1

2 magnet [71],

M
MS

=
egJµB JλM/kBT − 1

2

egJµB JλM/kBT + 1
2

(4.2)

where M
MS

is the magnetisation as a fraction of the saturation magnetisation; J
and gJ are the angular momentum and its associated g-factor, respectively; and
λM is the mean field, proportional to the magnetisation. This might be expected
since assuming that all moments are bathed in a uniform mean field is usually
inappropriate in the case of magnetism driven by short-range exchange interactions.
In particular, the estimated transition temperature Tc = 7.8(2)K is significantly
higher than both the other fitting functions used (as is clear from Fig. 4.5) and
than the previous estimate of the transition temperature, Tc = 6.8(3)K, derived
from heat capacity. Fitting extracted frequencies as a function of temperature to the
phenomenological function

ν(T) = ν(0)
[

1−
(

T
TN

)α]β

(4.3)

allows an estimate of the critical temperature and the exponent β to be extracted.
Leaving all parameters unconstrained does not result in a stable fit. However,

50



4.3. µ+SR results

fixing β = 0.367, corresponding to the 3D Heisenberg model, yields Tc = 7.2(2)K.
A similarly good fit can be obtained using a Landau-type parametrisation of the
equation of state of a ferromagnet (following Eq. (18) of Kuz’min [72]):

M2

M2
S
=

[
κ2 + 4 (1− κ)

1−(T/TC)
3

1+p(T/TC)
3/2

] 1
2

− κ

2 (1− κ)

1
2

, (4.4)

where T is temperature and TC is Curie temperature; and adjustable parameters
p = 0.25 and κ = 0.18 were used, appropriate for Fe (a metallic ferromagnet). This
yields the same estimate of the transition temperature as the phenomenological
Eq. (4.3). The agreement with these latter two models shows that the behaviour is
consistent with three-dimensional FM order.

4.3.2 Extracting magnetic moment with Bayesian analysis

Dipole-field simulations were performed for Ba2NaOsO6 using a variety of magnetic
models, both FM and AFM (ignoring any canting) with moments orientated along
[0 0 1], [0 1 1] and [1 1 1]. In the AFM cases, no propagation vector is used but instead
different Os moments within the unit cell are orientated in opposite directions:
those with a fractional coordinate x = 0 are antiparallel to those with x = 0.5, giving
rise to [1 0 0] FM sheets. The exact magnetic structure is unknown, but varying the
nature of the AFM order does not make a large difference to results, and hence an
exhaustive search appears not to be necessary. Since the muon site is unknown,
we adopt a probabalistic approach, and attempt to identify likely constraints on
muon position. The metal ions in this system are all positively charged, meaning
that the muon is unlikely to stop near them. As discussed in Chapter 3, muons
have been shown to stop around 0.1 nm from an O2− ion in other oxides [44, 45].
Thus, in these calculations, positions in the unit cell were generated at random
and dipole fields calculated at sites which were both approximately this distance
from an oxygen ion (0.09 ≤ rµ–O ≤ 0.11 nm) and not too close to a positive ion
(rµ–+ ≥ 0.1 nm). The magnitudes of the resulting fields were then converted into
muon precession frequencies, and the resulting histogram yields the probability
density function (pdf) f (ν/µ), evaluated as a function of precession frequency
ν divided by osmium moment µ (since the precession frequency scales with the
osmium moment). A subset of the results is shown in Fig. 4.6: the FM and AFM
[1 1 1] configurations were identified as most likely using DFT calculations; whilst
the AFM [0 0 1] shows a case with a pdf which differs markedly from those, and
shows the extent of variation between these different spin configurations—and
that this variation is quite small. The high-field tails, representing the muon sites
approaching 0.1 nm from an osmium ion, extend to around 200 MHz/µB.

This analysis ignores contributions from the Lorentz field and demagnetising
field, though these are likely to cancel each-other to some extent. Further, we
can estimate an approximate upper bound on their magnitude by evaluating µ0M,
giving γµ

2π

∣∣BL + Bdemag
∣∣ . 2 MHz. The importance of the contact hyperfine field,

51



4. Low-moment magnetism in Ba2MOsO6 (M = Li, Na)

0

0.05

0.1

f(
ν

/
µ

B
)

(µ
B
·M

H
z
−

1
)

0 10 20 30 40

ν/µB (MHz/µB)

FM [1 1 1]
AFM [1 1 1]
AFM [0 0 1]

Figure 4.6: Probability density functions of muon precession frequency ν per unit
magnetic moment µ under various assumed magnetic structures. Results are shown
for three different magnetic structures: the direction associated with each line
indicates the moment direction; AFM configurations possess FM planes along the
[1 0 0] direction, as described in the text.

Bhyperfine, is extremely difficult to evaluate (see Sec. 3.3.2) and it is neglected.
However, the Os7+ ion is both small and positively charged, meaning that not only
is the spatial extent of its spin-polarised electron cloud small, but the muon is likely
to stop far from it. Thus, this contribution should not be significant, and would be
even further reduced if its magnetic moment is low.

We then follow the Bayesian scheme outlined in Sec. 3.5, modified slightly due
to the presence of multiple frequencies in the spectra. When multiple frequencies νi
are observed, it is necessary to multiply their probabilities of observation in order
to obtain the chance of their simultaneous observation, and so we evaluate the pdf
of the magnetic moment µ given the set of observed frequencies {νi},

g(µ|{νi}) ∝ ∏
i

ˆ νi+∆νi

νi−∆νi

f (νi/µ)dνi , (4.5)

where ∆νi is the error on the fitted frequency, and f (ν/µ) is the pdf of frequency
per unit moment as described previously. The effect of this operation is somewhat
like a convolution, and is shown in Fig. 4.7.

The results of this are shown in Fig. 4.8, and show that for all collinear magnetic
structures considered a low moment is overwhelmingly likely. Furthermore, for
the FM case the most probable µ ≈ 0.2µB, consistent with the magnetisation
measurements. The lowest possible moment is set by the largest value of ν/µ in the
high-field tail, and is very close to zero.

Though this lends plausibility to the suggested low moment on the osmium
site, it does not explicitly test for the alternative, i.e. a canted antiferromagnetic
structure with a net moment. Thus, an alternative method of testing the hypothesis
was attempted, considering possible canted structures which would give rise to the
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Figure 4.7: Schematic representation of the convolution-like procedure of Eq. (4.5).
The column of graphs on the left shows the pdf of muon precession frequencies
in Ba2NaOsO6 given FM [1 1 1] structure assuming various different values of
the osmium moment µ. Light grey shaded regions correspond to the observed
frequencies together with their uncertainties, and the green shading then shows the
integrated probability of this frequency being observed. The graph on the right,
rotated by 90°, then shows the pdf of moment µ along the (vertical) x-axis. The
green impulses then represent the two green areas on the corresponding left graph
multiplied together. If the osmium has no moment, then muon precession would
not be observed. The broad maximum at µ ≈ 0.2µB corresponds to the slow increase
in probability of the lower frequency in tandem with the decrease in probability of
the other. By µ = 0.4µB, it is no longer possible to observe the lower frequency and
thus the probability of this moment is zero. At µ = µB, neither frequency is present
at the muon sites examined.
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Figure 4.8: Probability density functions of osmium moment µ in Ba2NaOsO6 given
the set of frequencies observed in muon experiments, {νi}. Results are shown for
three different magnetic structures: the direction associated with each line indicates
the moment direction; AFM configurations possess FM planes along the [1 0 0]
direction, as described in the text.

µ = 0.2µB seen in bulk measurements. In these simulations, moments are counter-
rotated by an angle α, subject to the constraint that µ sin α = 0.2µB, illustrated
in Fig. 4.9 (a). The intermediate evaluation of pdfs of moment size for various
different angles α is shown in Fig. 4.9 (b), and the results are shown in Fig. 4.10.
They are again consistent with a reduced moment µ, certainly lower than the
high-temperature paramagnetic moment of 0.6µB.

Thus, this probabilistic methodology suggests that the small magnetic moment
of ordered Ba2NaOsO6 is likely to be true weak-moment ferromagnetism, rather
than an artefact of a canted magnetic structure with larger moments. This is not an
exhaustive study of possible magnetic configurations but, given the results found
in the variety of trial structures examined, it is unlikely that a combination of a
pathological magnetic structure and muon site could give rise to the observed
precession frequencies and yet disguise a significantly larger magnetic moment on
the osmium site.

4.3.3 Ba2LiOsO6

For Ba2LiOsO6, a single, heavily-damped oscillation is present at low temperature.
Example data above and below the transition are shown in Fig. 4.11. The data fit to
an exponentially-damped Kubo–Toyabe function,

A(t) = A1pKTe−λ1t + A2e−λ2t + Abg, (4.6)

where the first component contains pKT, the Kubo–Toyabe relaxation defined in
Eq. (2.12); the second component represents a relaxation; and the third component
is a non-relaxing background. The Kubo–Toyabe function has a fitted field width
∆/2π = 0.8(1)MHz at 1.5 K. As discussed in Sec. 2.4.1, this indicates a static but
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Figure 4.9: (a) Schematic representation of two initially-AFM osmium moments
being counter-rotated by an angle α from an initial direction m̂ about a unit normal
n̂, maintaining a projection 0.2µB along the direction of magnetisation within the
sample. (b) Probability density function of osmium moment µ as a function of
canting angle α in Ba2NaOsO6 as moments are canted from FM order along the
[0 0 1] direction to AFM order along [0 1 0], rotating about [1 0 0]. Density of black
denotes the pdf of osmium moment size: vertical cross-sections are therefore pdfs
displayed like those in Fig. 4.6. A vertical cross-section at α = 90° corresponds to the
solid red line in Fig. 4.6. The similar vertical section at α = 0° does not correspond
to the dashed, light blue line in Fig. 4.6 because the AFM moments are ordered in
[1 0 0] FM sheets, which breaks the symmetry between b- and c-orientated moments.
The solid and long-dashed red lines indicate the median value of moment for a
given angle, and the interquartile range, respectively. The short-dashed blue lines
show the canted moment µ = (0.2± 0.02)µB/ sin α required to obtain the desired
magnetisation of ≈ 0.2µB, and thus the probability density between them gives rise
to a pdf of canting angle as shown in Fig. 4.10.
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Figure 4.10: Probability density functions of osmium moment µ in Ba2NaOsO6
given the set of frequencies observed in muon experiments, {νi}. Results are shown
for three different sets of magnetic structures: AFM moments initially pointing
antiparallel along the direction m̂ are counter-rotated as shown in Fig. 4.9 (a) around
a unit vector n̂. AFM configurations possess FM planes along the [1 0 0] direction,
as described in the text. The moment size is scaled with their rotation to ensure
that the net moment is 0.2µB.
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Figure 4.11: Example µ+SR spectra above (T = 8.4 K) and below (T = 1.5 K) the
transition temperature TN = 8 K for Ba2LiOsO6. For the 1.5 K data, the dashed
line is a Kubo–Toyabe fit, the solid line is a damped oscillation plus a fast-relaxing
component.
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Figure 4.12: The width σ of an initial Gaussian relaxation fitted over the first 1 µs
of data as a function of temperature T. Since this would be expected to scale with
the internal field of the magnet, this can be used to approximately identify the
transition to long-range order, which occurs at around 8 K. The line is a guide to
the eye.

spatially-disordered spontaneous field. Similarly, it is possible to fit the data with a
damped oscillation plus a fast-relaxing Gaussian component,

A(t) = A1 cos (2πνt) e−λ1t + A2e−σ2
2 t2

+ Abg, (4.7)

where the first component represents a damped oscillation, the second a pure re-
laxation and the third component a non-relaxing background. The large relaxation
on the oscillating component, λ1/2π = 0.84(5)MHz ≈ ν = 1.2(1)MHz, indicates
a wide field distribution, and thus also points to the presence of significant dis-
order. Following either argument, it seems that the long-range magnetic ordered
state present in the sample is static, but significantly disordered. At higher tem-
perature the relaxation function can be modelled with a Gaussian, signifying the
paramagnetic state.

The fast initial relaxation is associated with the onset of long-range order, but
how exactly is unclear. One possibility is that muons stop at a site with a very
small average field, but a wide distribution of fields, and thus this relaxation would
be expected to scale with the order parameter. Focussing only on the early-time
relaxation and plotting the relaxation rate allows a crude parametrisation of the
development of static fields as a function of temperature. This is shown in Fig. 4.12,
and displays the magnetic transition at 8 K.

The moments in Ba2LiOsO6 therefore appear to be static but show a larger
degree of disorder than those of the Ba2NaOsO6 for T < TN. This makes applying
the Bayesian technique more difficult, firstly because identifying a single internal
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Figure 4.13: Probability density functions of osmium moment µ given the approxi-
mate local field extracted from experimental data in Ba2LiOsO6. Results are shown
for three different magnetic structures: the direction associated with each line
indicates the moment direction; AFM configurations possess FM planes along the
[1 0 0] direction, as described in the text.

field is problematic, and secondly because simple magnetic structures do not give
rise to such distributions of fields, and thus can only be an approximation to the
true structure.

The local field at the muon site can be estimated from either the extracted
Kubo–Toyabe field distribution width or the damped oscillation frequency and
both are indeed similar in value. Performing a Bayesian analysis assuming that
the fitted oscillation frequency at 1.5 K gives the field at the muon site allows the
osmium moment size in this lithium analogue to be estimated. The distributions of
muon precession frequency at muon sites near oxygen and far from positive ions
are similar to those for Ba2NaOsO6 shown in Fig. 4.6, whilst inputting the inferred
frequency gives rise to pdfs of osmium moment shown in Fig. 4.13. This analysis
therefore yields a likely low moment . 0.2µB, consistent with that measured in the
spin-flop state seen in Figs. 4.2 and 4.3.

4.4 Discussion

Thus, both bulk probes in large applied field and a Bayesian analysis of zero-
field µ+SR suggest that a low moment is common to both Ba2MOsO6 compounds
studied here. This agreement between techniques acts as both corroboration of
the weak ferromagnetism proposed in the sodium osmate, and suggests that the
lithium compound is not simply an unexciting AFM structural analogue since it too
possesses a reduced moment. It is also a preliminary vindication of the Bayesian
dipole-field technique, given the agreement between the muon-estimated moments
and those inferred from SQUID and pulsed-field magnetisation measurements.

In contrast to BaIrO3, which achieves a low ferromagnetic moment due to charge-
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density wave formation [73], in these compounds the origin must be rather different.
It has been postulated [68, 69] that the d1 spin-moment of Os is compensated
by the t2g L = 1 orbital moment induced by the very strong spin–orbit coupling.
Partial orbital quenching by the environment is thought to destroy the perfect
compensation of the moment, leading to a small remaining magnetic moment.
However, an important complication [69] is that the antiferromagnetic coupling
between OsO6 clusters takes place on an fcc lattice. It is therefore strongly frustrated
and hence may be responsible for the sensitivity of the ground state to minor
chemical changes, explaining the difference between the magnetic properties of
isostructural Ba2LiOsO6 and Ba2NaOsO6.
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Chapter 5

Introduction to two-dimensional
molecular magnetism

In the following two chapters (Quasi–two-dimensional molecular magnets
[Cu(HF2)(pyz)2]X and Other quasi–two-dimensional molecular magnets), I will
discuss a series of molecular materials which act as model systems for exploring
fundamental magnetism. In particular, the structures of the compounds studied
here give rise to magnetic exchange interactions which are significantly larger
within planes in the materials than between those planes. These materials therefore
behave approximately as collections of isolated two-dimensional magnetic layers,
with a small inter-layer coupling which becomes significant at low enough tempera-
tures. This chapter provides some introductory material relevant to both chapters,
first giving a brief overview of the physics of the model being probed, the S = 1

2
two-dimensional square-lattice quantum Heisenberg antiferromagnet, in Sec. 5.1;
then describing molecular magnetism, concentrating on the structures examined in
this thesis in Sec. 5.2; and finally, an overview is given of the methods by which we
can parametrise the low dimensionality of materials in Sec. 5.3.

The work in these chapters has been published, as indicated in Ref. 74.

5.1 The S = 1
2 2D square-lattice quantum Heisenberg

antiferromagnet

The S = 1
2 two-dimensional square-lattice quantum Heisenberg antiferromagnet

(2DSLQHA) continues to be one of the most important theoretical models in
condensed matter physics [75]. Experimental realisations of the 2DSLQHA in
crystals also contain an interaction between planes, so that the relevant model
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describing the coupling of electronic spins Si gives rise to the Hamiltonian1

H = J ∑
〈i,j〉xy

Si · Sj + J⊥ ∑
〈i,j〉z

Si · Sj, (5.1)

where J (J⊥) is the strength of the in- (inter-) plane coupling and the first (second)
summation is over neighbours parallel (perpendicular) to the 2D xy-plane. Any
2D model (J⊥ = 0) with continuous symmetry will not show long-range magnetic
order (LRO) for T > 0 due to a divergence of infrared fluctuations [76, 77]. However,
layered systems approximating 2D models (J⊥ 6= 0) will inevitably enjoy some
degree of interlayer coupling and this will lead to magnetic order, albeit at a reduced
temperature due to the influence of quantum fluctuations. Quantum fluctuations
are also predicted to reduce the value of the magnetic moment in the ground state
of the 2DSLQHA to around 60% of its classical value [75], and this reduction is often
seen in the ordered moments of real materials. In layered materials that approximate
the 2DSLQHA, the measurement of the antiferromagnetic ordering temperature TN
is often problematic due not only to this reduction of the magnetic moment, but
also to short-range correlations that build up in the quasi-2D layers above TN. These
correlations lead to a reduction in the size of the entropy change that accompanies
the phase transition, reducing the size of the anomaly in the measured specific
heat [78]. It has been shown in a number of previous cases that µ+SR measurements
do not suffer from these effects and therefore represent an effective method for
detecting magnetic order in complex anisotropic systems [79, 80, 81, 82].

5.2 Molecular magnetism

The rich chemistry of molecular materials allows for the design and synthesis of
a wide variety of highly-tunable magnetic model systems [83]. Magnetic centres,
exchange paths and the surrounding molecular groups can all be systematically
modified, allowing investigation of their effects on magnetic behaviour. In particular,
the existence of different exchange paths along different spatial directions can result
in quasi–low-dimensional magnetic behaviour (i.e. systems with magnetic inter-
actions constrained to act in a two-dimensional plane or along a one-dimensional
chain). Such systems have the potential to better approximate low-dimensional mod-
els than many traditional inorganic materials. In addition, these molecular materials
can have exchange energy scales of order J/kB ∼ 10 K which are accessible with
typical laboratory magnetic fields [80] of B ∼ 10 T allowing an additional avenue
for their experimental study. This contrasts with typical inorganic low-dimensional
systems where the exchange is found to be J/kB ∼ 1000 K and fields of B ∼ 1000 T
would be needed to significantly perturb the spin system.

It has also been shown [84, 85] that a small XY-like anisotropy exists in some
molecular materials. Although J⊥ is the decisive energy scale for the magnetic

1This Hamiltonian employs the single-J convention such that, in the case of just two S = 1
2

interacting spins, the separation between the singlet and triplet energies is equal to the interaction
strength J.

62



5.3. Parametrising exchange anisotropy

(a) (b)

H C N O

Figure 5.1: Bridging ligands used in the compounds described in this thesis: (a)
pyrazine (N2C4H4, abbreviated pyz); and (b) (ii) pyridine-N-oxide (C5H5NO, ab-
breviated pyo). Dashed lines indicate where the ligands bond to other parts of
molecular structures.

ordering, this anisotropy has been shown to have an influence on the ordering
temperature [84] and determines the shape of the low-field B–T phase diagram of
these systems [85].

Several classes of molecular magnetic material closely approximate the 2DSLQHA
model, and the following two chapters report the results of µ+SR measurements
performed on several such materials. These systems are self-assembled coordina-
tion polymers, based around paramagnetic ions such as Cu2+, linked by neutral
bridging ligands and coordinating anion molecules. The materials are based on
combinations of three different ligands: (i) pyrazine (N2C4H4, abbreviated pyz) and
(ii) pyridine-N-oxide (C5H5NO, abbreviated pyo), both of which are planar rings;
and (iii) the linear bifluoride ion [(HF2)−], which is bound by strong hydrogen
bonds F· · ·H· · ·F. The pyz and pyo ligands are shown in Fig. 5.1.

Specifically, Chapter 6 discusses the molecular system [M(HF2)(pyz)2]X, where
M2+ = Cu2+ is the transition metal cation and X− is one of various anions (e.g. BF−4 ,
ClO−4 , PF−6 etc.). Chapter 7 then reports the results of measurements on other
quasi-2D systems. First, [Cu(pyz)2(pyo)2]Y2, with Y− = BF−4 or PF−6 , in which pyo
ligands bridge Cu(pyz)2 planes. Then, the quasi-2D non-polymeric compounds
[Cu(pyo)6]Z2, where Z−=BF−4 , ClO−3 or PF−6 are examined. Materials in which either
Ni2+ (S = 1) or Ag2+ (S = 1

2) form the magnetic species in the quasi-2D planes
rather than Cu2+ are also investigated.

5.3 Parametrising exchange anisotropy

In order to assess the extent to which these systems approximate the 2DSLQHA, we
can quantify their dimensionality by comparing the transition temperature TN to
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the exchange parameter J. The temperature TN can be extracted using µ+SR, whilst
J can be obtained reliably from pulsed-field magnetisation measurements [80], heat
capacity or magnetic susceptibility. Further, quantum Monte Carlo simulations
allow this to be related to the interlayer exchange J⊥, and the correlation length of
quantum fluctuations, ξ.

Mean-field theory predicts a simple relationship for the ratio of the transition
temperature TN and the exchange J given by [34]

kBTN

J
=

2
3

zS(S + 1), (5.2)

where kB is Boltzmann’s constant, z is the number of nearest neighbours and S is
the spin of the magnetic ions. In the pseudocubic [Cu(HF2)(pyz)2]X systems, S = 1

2
and z = 6, and Eq. (5.2) yields kBTN/J = 3. However, the reduced dimensionality
increases the prevalence of quantum fluctuations, depressing the transition tem-
perature, and in [Cu(HF2)(pyz)2]BF4 we find kBTN/J ≈ 0.25, which is indicative of
large exchange anisotropy.

Combining the experimental measures of TN and J with the results of quantum
Monte Carlo (QMC) simulations allows us to deduce the exchange anisotropy
J⊥/J in the system [80]. Specifically, QMC simulations [86] for 2DSLQHA where
10−3 ≤ J⊥/J ≤ 1 are well described by the expression

J⊥
J

= eb−4πρs/TN , (5.3)

where ρs is the spin stiffness and b is a numerical constant. For S = 1
2 , the

appropriate parameters are ρs/J = 0.183 and b = 2.43. This expression allows
a better estimate of kBTN/J in a 3D magnet: evaluating for J⊥/J = 1 yields
kBTN/J = 0.95. This is lower than the crude mean-field estimate because mean-field
theory takes no account of fluctuations. Estimates of J for our materials, from
pulsed magnetic field studies except where noted, along with calculated J⊥/J ratios,
are shown in the summary tables throughout these chapters.

Another method of parametrising the exchange anisotropy is to consider the
predicted correlation length of two-dimensional correlations in the layers at the
temperature at which we observe the onset of LRO. The larger this length, the better
isolated the layers can be supposed to be. This can be estimated by combining an
analytic expression for the correlation length in a pure 2DSLQHA [87], ξ2D, with
quantum Monte Carlo simulations to obtain an expression [88, 89] appropriate for
1 ≤ ξ2D/a ≤ 350, 000,

ξ2D

a
= 0.498e1.131J/kBT

[
1− 0.44

(
kBT

J

)
+O

(
kBT

J

)2
]

, (5.4)

where a is the square lattice constant, and T is the temperature. This formula
yields ξ2D(TN) ≈ 0.5a for the mean-field model (kBTN/J = 3), and ξ2D(TN) ≈ a for
kBTN/J = 0.95 from quantum Monte Carlo simulations [i.e. Eq. (5.3) with J⊥/J = 1].
By comparison, in [Cu(HF2)(pyz)2]BF4 Eq. (5.4) gives ξ2D(TN) ≈ 50a, showing a
dramatic increase in the size of correlated regions which build up in the quasi-2D
layers before the onset of LRO.
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Chapter 6

Quasi–two-dimensional molecular
magnets [Cu(HF2)(pyz)2]X

The synthesis of the [M(HF2)(pyz)2]X system [90, 80, 91] represented the first
example of the use of a bifluoride building block to make a three-dimensional
coordination polymer. This class of materials possesses a highly stable structure
due to the exceptional strength of the bifluoride hydrogen bonds. The structure
of the [M(HF2)(pyz)2]X system [90, 91] comprises infinite 2D [M(pyz)2]2+ sheets
which lie in the ab-plane, with bifluoride ions (HF2)− above and below the metal
ions acting as bridges between the planes, to form a pseudocubic network. The
X− anions occupy the body-centre positions within each cubic pore. An example
structure, for [Cu(HF2)(pyz)2]PF6, is shown in Fig. 6.1. Samples are produced
in polycrystalline form via aqueous chemical reactions between MX2 salts and
stoichiometric amounts of ligands. Preparation details for the compounds are
reported in Refs. 90, 91, 92.1

In this section we consider those materials where the M cations are Cu2+ 3d9

S = 1
2 centres. It is thought that the magnetic behaviour of these materials results

from the 3dx2−y2 orbital of the Cu at the centre of each CuN4F2 octahedron lying in
the CuN4 plane, so that the spin exchange interactions between neighbouring Cu2+

ions occur through the s-bonded pyz ligands [90]. The interplane exchange through
the HF2 bridges connecting two Cu2+ ions should be very weak as these bridges
lie on the 4-fold rotational axis of the Cu 3dx2−y2 magnetic orbital, resulting in
limited overlap with the fluorine pz orbitals. Therefore to a first approximation, the
magnetic properties of [M(HF2)(pyz)2]X can be described in terms of a 2D square
lattice.

Measurements for X− = BF−4 , ClO−4 and SbF−6 were made using the MuSR
spectrometer at ISIS, whilst PF−6 , AsF−6 , NbF−6 and TaF−6 were measured using GPS
at PSI.

1Samples studied in this chapter were synthesised by J. L. Manson and J. A. Schleuter.
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6. Quasi–two-dimensional molecular magnets [Cu(HF2)(pyz)2]X

H C N F P Cua

b

c

Figure 6.1: The structure of [Cu(HF2)(pyz)2]PF6, as an example of the
[M(HF2)(pyz)2]X series. Copper ions are joined in a 2D square lattice by pyrazine
ligands to form Cu(pyz)2+

2 sheets; the 2D layers are joined in the third dimension by
HF−2 groups, making a pseudocubic 3D structure; and this structure is stabilised by
a PF−6 anion at the centre of each cubic pore. For clarity, hydrogen atoms attached
to pyrazine rings have been omitted, and only one PF−6 anion is shown.

6.1 Long-range magnetic order
The main result of our measurements on these systems is that, below a critical
temperature TN, oscillations in the asymmetry spectra A(t) are observed at two
distinct frequencies, for all materials in the series. This shows unambiguously
that each of these materials undergoes a transition to a state of LRO. Example
asymmetry spectra are shown in the left-hand column of Figs. 6.2 and 6.3. They
were found to be best fitted with a relaxation function

A(t) = A0

[
p1e−λ1t cos(2πν1t + φ1)

+p2e−λ2t cos(2πP2ν1t + φ2) + p3e−λ3t
]

+Abge−λbgt, (6.1)

where A0 represents the contribution from those muons which stop inside the
sample and Abg accounts for a relaxing background signal due to those muons that
stop in the silver sample holder or cryostat tails, or with their spin parallel to the
local field. Of those muons which stop in the sample, p1 indicates the weighting
of the component in an oscillating state with frequency ν1; p2 is the weighting of a
lower-frequency oscillating state with frequency ν2; and p3 represents the weighting
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Figure 6.2: Data and the results of fits to Eq. (6.1) for [Cu(HF2)(pyz)2]X magnets
with tetrahedral anions X−. From left to right: (a) and (d) show sample asymmetry
spectra A(t) for T < TN along with a fit to Eq. (6.1); (b) and (e) show frequencies as
a function of temperature [no data points are shown for the second line because
this frequency ν2 was held in fixed proportion to the first, ν1 (see text)]; and (c) and
(f) show relaxation rates λi as a function of temperature. In the ν(T) plot, error
bars are included on the points but in most cases they are smaller than the marker
being used. The blue solid line representing ν1 in (b) and (e) corresponds to the
blue filled circles in the third column of graphs [(c) and (f)] for that component’s
relaxation, λ1, whilst the red dashed line and red unfilled circles correspond to ν2
and λ2, respectively. The green filled triangles correspond to the fast relaxation λ3.

of a component with a large relaxation rate λ3. All parameters were initially left
free to vary. The second frequency was found to vary with temperature in fixed
proportion to ν1 via ν2 = P2ν1 for each material. The parameter P2 was identified
by fitting the lowest-temperature A(t) spectra where Eq. (6.1) would be expected to
most accurately describe the data, and subsequently held fixed during the fitting
procedure. Phase factors φi were also found to be necessary in some cases to obtain
a reliable fit. The parameters resulting from these fits are listed in Table 6.1, and data
with fits are shown in Figs. 6.2 and 6.3. We also note here that the discontinuous
nature of the change in all fitted parameters and the form of the spectra at TN
strongly suggest that these materials are magnetically ordered throughout their
bulk.

The frequencies and relaxation rates as a function of temperature extracted
from these fits are shown in the central column of Figs. 6.2 and 6.3. The muon
precession frequency, which is proportional to the internal field in the material, can
be considered an effective order parameter for the system. Consequently, fitting
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Figure 6.3: Example data and fits for [Cu(HF2)(pyz)2]X magnets with octahedral
anions X−. From left to right: (a), (d), (g), (j) and (m) show sample asymmetry
spectra A(t) for T < TN along with a fit to Eq. (6.1); (b), (e), (h), (k) and (n) show
frequencies as a function of temperature [no data points are shown for the second
line because this frequency ν2 was held in fixed proportion to the first, ν1 (see text)];
and (c), (f), (i), (l) and (o) show relaxation rates λi as a function of temperature.
In the ν(T) plot, error bars are included on the points but in most cases they are
smaller than the marker being used. The blue solid line representing ν1 in (b), (e),
(h), (k) and (n) corresponds to the blue filled circles in the third column of graphs
[(c), (f), (i), (l) and (o)] for that component’s relaxation, λ1, whilst the red dashed
line and red unfilled circles correspond to ν2 and λ2, respectively.
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extracted frequencies as a function of temperature to the phenomenological function

ν(T) = ν(0)
[

1−
(

T
TN

)α]β

, (6.2)

allows an estimate of the critical temperature and the exponent β to be extracted.
Our results fit well with a previous observation [80] that the compounds divide
naturally into two classes: those with tetrahedral anions X− = BF−4 , ClO−4 and those
with octahedral anions X− = AF−6 . The tetrahedral compounds have lower transition
temperatures TN . 2 K, as compared to the octahedral compounds’ TN & 4 K; and
the tetrahedral compounds also display slightly lower oscillation frequencies than
their octahedral counterparts [80].

This difference has been explained in terms of differences in the crystal structure
between the two sets of compounds. Firstly, the octahedral anions are larger than
their tetrahedral counterparts. Secondly, the pyrazine rings are tilted by differing
amounts with respect to the normal to the 2D layers: those in the octahedral
compounds are significantly more upright. Since the Cu 3dx2−y2 orbitals point
along the pyrazine directions, these tilting angles might be expected, to first order,
to make little difference to nearest-neighbour exchange because such rotation is
about a symmetry axis as viewed from the copper site. However, it may be that the
different direction of the delocalised orbitals above and below the rings through
which exchange probably occurs, possibly in conjunction with hybridisation with
the anion orbitals, results in an altered next-nearest neighbour or higher-order
interactions, changing the transition temperature.

Within the tetrahedral compounds, the difference in the weighting of the os-
cillatory component (p1 + p2) in X− = BF−4 and ClO−4 probably results from the
difficulty in fitting the fast-relaxing component. Even with little change in the
size of the oscillations, any error in assigning the magnitude of this component
will affect the proportion of the A(t) signal attributed to them. This difficulty is
partly due to the resolution-limited nature of ISIS arising from the pulsed beam
structure. In the octahedral compounds, X− = SbF−6 and TaF−6 do not appear to
have a resolvable fast-relaxing component, and consequently p3 was set to zero
during the fitting procedure. This is reflected by dashes in the p3 and λ3 columns
in Table 6.1.

The fact that two oscillatory frequencies are observed points to the existence of
at least two magnetically distinct classes of muon site. In general it is found that
p1 ≈ p2 for these materials, making the probability of occupying the sites giving
rise to magnetic precession approximately equal. The weightings p1,2 were found
to be significantly less than the weighting p3 relating to the fast-relaxing site. This,
in combination with the magnitude of the fast relaxation λ3(T = 0) & 10 MHz,
suggests that this term should not be identified with the 1

3-tail which results from
muons with spins parallel to their local field. (If that were the case then we would
expect (p1 + p2)/p3 = 2, which is not observed.) It is likely that each of the
components, p1, p2 and p3, therefore reflect the occurrence of a separate class of
muon site in this system. The possible positions of these three classes of site are
investigated in Sec. 6.4.
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6.1. Long-range magnetic order

The temperature evolution of the relaxation rates λi is shown in the right-hand
columns of Figs. 6.2 and 6.3. In the fast-fluctuation limit, the relaxation rates

are expected [28] to vary as λ ∝ ∆2τ, where ∆ =
√

γ2
µ〈(B− 〈B〉)2〉 is the second

moment of the local magnetic field distribution (whose mean is 〈B〉) in frequency
units, and τ is the correlation time. In all measured materials, the relaxation
rate λ1, corresponding to the higher oscillation frequency, starts at a small value
at low temperature and increases as TN is approached from below. This is the
expected temperature-dependent behaviour and most likely reflects a contribution
from critical slowing down of fluctuations near TN (described e.g. in Ref. 93). In
contrast, the relaxation rate λ2 (associated with the lower frequency) starts with a
higher magnitude at low temperature and decreases smoothly as the temperature
is increased. This is also the case for the relaxation rate λ3 of the fast-relaxing
component. This smooth decrease of these relaxation rates with temperature has
been observed previously in magnetic materials [36, 94] and seems to roughly track
the magnitude of the local field. It is possible that muon sites responsible for λ1
and λ3 lie further from the 2D planes than those sites giving rise to λ2, and are thus
less sensitive to 2D fluctuations, reducing the influence of any variation in τ. The
temperature evolution of λ1 and λ3 might then be expected to be dominated by the
magnitude of ∆, which scales with the size of the local field and would therefore
decrease as the magnetic transition is approached from below.

The need for nonzero phases φi has been identified in previous studies of
molecular magnets [81, 95, 96, 82], but never satisfactorily explained. One possible
explanation for these might be that the muon experiences delayed state formation.
However, the simplest model of this can be ruled out as the phases appear not to
correlate with νi. Such a correlation would be expected since a delay of t0 before
entering the precessing state would give rise to a component of the relaxation
function ai(t) = cos [2πνi (t + t0)] = cos (2πνit + φi), with φi ∝ νi, which is not
observed. This does not completely rule out delayed state formation, as t0 could
be a function of temperature (although this seems unlikely at these temperatures).
Nonzero phases are also sometimes observed when attempting to fit data with
cosinusoidal relaxation functions from systems having incommensurate magnetic
structures. The phase then emerges as an artefact of fitting, as a cosine with a π

4
phase shift approximates the zeroth-order Bessel function of the first kind, J0(ωt),
which is obtained from µ+SR of an incommensurately-ordered system [26, 97]. The
Bessel function arises because the distribution of fields seen by muons at sites
is asymmetric. However, attempts to fit the data with a pair of damped Bessel
functions produced consistently worse fits than fits to Eq. (6.1), suggesting that a
simple incommensurate structure is not a satisfactory explanation. It is also possible
that several further magnetically-inequivalent muon sites exist, resulting in multiple,
closely-spaced frequencies which give the spectra a more complex character which
is not reflected in the fitting function. The simpler relaxation function would then
obtain a better fit if the phase were allowed to vary. This has been observed, for
example, in LiCrO2 [41]. A final possibility is that the distribution of fields at muon
sites is asymmetric for another reason, perhaps arising from a complex magnetic
structure. This may give rise to a Fourier transform which is only able to be fitted
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Figure 6.4: Sample TF µ+SR data measured for [Cu(HF2)(pyz)2]BF4 in an applied
field of 2 T are shown in (a) and (b). Data are shown in the ‘rotating reference
frame’, rotating at γµ × 1.9 T = 257 MHz, nearly cancelling out spin precession
induced by the 2 T applied transverse field. (c) The evolution of the magnetic
broadening σ with T, showing a magnetic transition at 1.98 K in 2 T. (d) The B–T
phase diagram from Ref. 85 showing the nonmonotonic behaviour at low applied
magnetic field. In the key, HC is heat capacity, theory represents the results of
computational modelling, and µ+SR shows our results from TF measurements (see
main text).

with phase-shifted cosines. However, the mechanism by which this would occur is
unclear.

6.2 Nonmonotonic field dependence of TN

Although the interplane exchange coupling J⊥ is expected to have a large amount
of control of the thermodynamic properties of these materials, it may be the case
that single-ion anisotropies are also responsible for deviations in the behaviour
of our materials from the predictions of the 2DSLQHAF model. In particular,
these anisotropies have been demonstrated to show a crossover to magnetic be-
haviour consistent with the 2D XY model [84]. It was recently reported [85] that
[Cu(HF2)(pyz)2]BF4 exhibits an unusual nonmonotonic dependence of TN as a
function of applied magnetic field B [see Fig. 6.4 (d)]. This behaviour was explained
as resulting from the small XY-like anisotropy of the spin system in these systems.
The physics of the unusual field-dependence then arises due to the dual effect of
B on the spins, both suppressing the amplitude of the order parameter by polar-
ising the spins along a given direction, and also reducing the phase fluctuations
by changing the order parameter phase space from a sphere to a circle. A more
detailed explanation for the behaviour [85] reveals that the energy scales of the
physics are controlled by a Kosterlitz–Thouless-like mechanism, along with the
interlayer exchange interaction J⊥.
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6.3. Muon response in the paramagnetic phase

The measurement of the B–T phase diagram in [Cu(HF2)(pyz)2]BF4 reported in
Ref. 85 was made by observing a small anomaly in specific heat. In order to test
whether the phase boundary could be determined using muons, transverse-field
(TF) µ+SR measurements were carried out using the LTF instrument at SµS. In these
measurements, the field is applied perpendicular to the initial muon spin direction,
causing a precession of the muon-spins in the sum of the applied and internal field
directed perpendicular to the muon-spin orientation (see Sec. 2.4.2). Example TF
spectra measured in a field of 2 T are shown in Fig. 6.4 (a) and (b). The spectra are
well described by a function

A(t) = A(0)e−σ2t2/2 cos(2πνt + φ), (6.3)

where the phase factor depends on the details of the detector geometry, and σ is
proportional to the second moment of the internal field distribution via σ2 = γ2

µ〈B2〉.
Upon cooling through TN a large increase in σ is observed, as shown in Fig. 6.4 (c).
This approximately resembles an order parameter, and the discontinuity at the
onset of the increase is identified with TN by fitting σ with the above-TN relaxation
adding in quadrature to the additional relaxation present below the transition. The
resulting point at TN(B = 2 T) = 1.98(4) K is shown to be consistent with the
predicted low-field phase boundary in Fig. 6.4 (d). A further point, identifiable by
its vertical rather than horizontal error bar, was found by performing a field scan
at a fixed temperature of T = 1.8 K. The field-dependence of the relaxation rate
shows a sharp increase at the transition, at B = 1.5± 0.3 T.

Points derived from µ+SR measurements possibly lie slightly lower in T than
both that predicted by theory, and the line predicted on the basis of the specific heat
measurements. The theoretical calculations use J/kB = 5.9 K and J⊥/J = 2.5× 10−3,
whilst our estimates suggest J/kB = 6.3 K and J⊥/J = 0.9× 10−3. Performing these
calculations for a purely 2D system results in the entire curve shifting to the left [85],
and consequently the leftward shift of our data points is consistent with our finding
of increased exchange anisotropy. It is clear that the TF µ+SR technique may be
used in future to measure the B–T phase diagram and enjoys some of the same
advantages it has in zero field over specific heat and magnetic susceptibility in
anisotropic systems.

6.3 Muon response in the paramagnetic phase

Above TN, the character of the measured spectra changes considerably and lower-
frequency oscillations characteristic of the dipole–dipole interaction between muons
and fluorine nuclei [98] are observed. The Cu2+ electronic moments, which dominate
the spectra for T < TN, are disordered in the paramagnetic regime and fluctuate
very rapidly on the muon time scale. They are therefore motionally narrowed
from the spectra, leaving the muon sensitive to the quasi-static nuclear magnetic
moments.
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6. Quasi–two-dimensional molecular magnets [Cu(HF2)(pyz)2]X

M X rµ–F (nm) p1 (%) σ (MHz) T (K)

Cu BF4 0.1038(1) 77(1) 0.29(1) 5.1
Cu ClO4 0.1081(2) 70(1) 0.37(1) 5.1
Cu PF6 0.1044(2) 74(2) 0.29(2) 5.2
Cu AsF6 0.1043(3) 78(2) 0.31(3) 4.9
Cu SbF6 0.1047(2) 64(1) 0.30(1) 5.0

Cu BF4 0.1042(1) 76(1) 0.26(1) 26
Cu ClO4 0.1087(1) 71(1) 0.37(1) 25
Cu SbF6 0.1080(3) 59(1) 0.26(1) 30
Cu NbF6 0.1039(4) 69(3) 0.32(3) 32
Cu TaF6 0.1039(2) 78(2) 0.26(3) 32

Ni SbF6 0.1068(4) 60(1) 0.38(1) 19
Ni PF6 0.1063(5) 66(2) 0.40(1) 8.4

Table 6.2: Muon–fluorine dipole–dipole interaction fitted parameters in the family
[M(HF2)(pyz)2]X, extracted from fitting data to Eq. (6.7). In addition to separation
by metal ion, Cu compounds are grouped by the temperature at which the measure-
ment was made: those compounds measured over a range of temperatures appear
in both sections of the table.

A muon and nucleus interact via the two-spin Hamiltonian

Ĥ = ∑
i>j

µ0γiγjh̄
4πr3

[
Si · Sj − 3 (Si · r̂)

(
Sj · r̂

)]
, (6.4)

where the spins Si,j with gyromagnetic ratios γi,j are separated by the vector r. This
gives rise to a precession of the muon spin, and the muon-spin polarisation along a
quantisation axis z varies with time as

Dz(t) =
1
N

〈
∑
m,n

∣∣〈m
∣∣σq
∣∣ n
〉∣∣2 eiωm,nt

〉

q

, (6.5)

where N is the number of spin states, |m〉 and |n〉 are eigenstates of the total
Hamiltonian Ĥ, σq is the Pauli spin matrix corresponding to the direction q, and 〈〉q
represents an appropriately-weighted powder average. The vibrational frequency
of the muon–fluorine bond exceeds by orders of magnitude both the frequencies
observable in a µ+SR experiment, and the frequency appropriate to the dipolar
coupling in Eq. (6.4); the bond length probed via these entangled states is thus
time-averaged over thermal fluctuations. Fluorine is an especially strong candidate
for this type of interaction firstly because it is highly electronegative causing the
positive muon to stop close to fluorine ions, and secondly because its nuclei are
100% 19F, which has I = 1

2 .
Data were fitted to a relaxation function

A(t) = A0(p1e−λF–µtDz(t) + p2e−σ2t2
) + Abge−λbgt, (6.6)
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Figure 6.5: Data taken at T = 15 K� TN = 1.4 K for [Cu(HF2)(pyz)2]BF4, showing
Fµ oscillations along with a fit to Eq. (6.6). The inset shows the energy levels present
in a simple system of two S = 1

2 spins, along with the allowed transitions.

where the amplitude fraction p1 ≈ 70% reflects the muons stopping in a site or
set of sites near to a fluorine nucleus, which result in the observed oscillations
Dz(t); the weak relaxation of the muon spins is crudely modelled by a decaying
exponential. The fraction p2 ≈ 30% describes those muons stopping in a class of
sites primarily influenced by the randomly-orientated fields from other nuclear
moments, giving rise to a Gaussian relaxation with σ ≈ 0.3 MHz. Example data
and a fit are shown in Fig. 6.5, whilst parameters extracted by fitting this function
to data from each compound are shown in Table 6.2.

Fits to a variety of different Dz(t) functions were attempted, including that
resulting from a simple Fµ bond (previously observed in some polymers [99])
and the better-known FµF complex comprising a muon and two fluorine nuclei
in linear symmetric configuration, which is seen in many alkali fluorides [100].
This latter model was also modified to include the possibilities of asymmetric and
nonlinear bonds. Previous measurements [98] made in the paramagnetic regime of
[Cu(HF2)(pyz)2]ClO4 suggested that the muon stopped close to a single fluorine in
the HF2 group and also interacted with the more distant proton. This interaction is
dominated by the F–µ coupling and, for our fitting, the observed muon–fluorine
dipole–dipole oscillations were found to be well described by a single Fµ interaction
damped by a phenomenological relaxation factor. For such Fµ entanglement, the
time evolution of the polarisation is described by

Dz(t) =
1
6

[
1 +

3

∑
j=1

uj cos
(
ωjt
)
]

, (6.7)

where u1 = 2, u2 = 1 and u3 = 2. The frequencies ωj = jωd/2, where ωd =

µ0γµγFh̄/4πr3, in which γF = 2π × 2.518× 108 MHz T−1 is the gyromagnetic ratio
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6. Quasi–two-dimensional molecular magnets [Cu(HF2)(pyz)2]X

material r0 (nm) a (10−7 nm K−2)
[Cu(HF2)(pyz)2]BF4 0.10376(3) 3.96(6)

[Cu(HF2)(pyz)2]ClO4 0.10842 2.7212
PVDF [99] 0.10914 1.9488

Table 6.3: Fitted values obtained by fitting muon–fluorine bond lengths with a T2

scaling law, as Eq. (6.9).

of a 19F nucleus [101], and r is the muon–fluorine separation. These three frequen-
cies arise from the three transitions between the three energy levels present in a
system of two entangled S = 1

2 particles (see inset to Fig. 6.5). The fact that the relax-
ation function is similar in all materials in the series, including [Cu(HF2)(pyz)2]ClO4
which is the only compound studied without fluorine in its anion, (the only differ-
ence being a slight lengthening of the µ–F bond, and with no significant change in
oscillating fraction) suggests that the muon site giving rise to the Fµ oscillations in
all systems is near the HF2 bridging ligand.

The temperature evolution of the Fµ signal was studied for T ≤ 300 K in
[Cu(HF2)(pyz)2]BF4 and [Cu(HF2)(pyz)2]ClO4. In both cases, the dipole–dipole
oscillations disappear gradually in a temperature range 150 . T . 250 K, with
oscillations totally absent in the centre of this range, followed by reappearing as
temperature is increased further. Plots of A(t) spectra at a variety of temperatures
are shown in Fig. 6.6 (a) and (d). The data were initially fitted to Eq. (6.6), with all
parameters left free to vary. The temperature-evolution of the muon–fluorine bond
length, rF–µ, can be seen in Fig. 6.6 (b) and (e). The spectra were also fitted with

A(t) = A0

(
p1e−λ0t + p2e−σ2t2

)
+ Abge−λbgt, (6.8)

a sum of an exponential and a Gaussian relaxation, which might be expected to
describe the data in the region where the oscillations vanish. Both this relaxation
and that extracted from Eq. (6.6) are plotted in Fig. 6.6 (c) and (f), labelled λ0 and
λF–µ respectively.

This bond length appears to grow and then shrink by nearly 20% over the 100 K
range where the oscillations fade from the spectra and reappear. This variation is
significantly larger than any variation in crystal lattice parameters which would
be expected. Since the oscillations visibly disappear from the measured spectra,
results from fitting with an oscillatory relaxation function are artefacts of the fitting
procedure: since the frequencies scale with 1/r3, increasing bond length together
with the associated relaxation rate fits the data with a suppressed oscillatory signal.
This can be approximately quantified by examining the ratio Q = 2πλF–µ/ωd, where
a large value indicates that the function relaxes significantly before a single Fµ
oscillation is completed. The shaded regions in Fig. 6.6 show where Q > 2, which
acts as an approximate bound on where the parametrisation in Eq. (6.6) would be
expected to fail. In the low-T region where Q < 2, the bond lengths appear to
scale roughly as T2, which has previously been observed in fluoropolymers [99].
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Parameters extracted from fitting to

rF–µ = aT2 + r0 (6.9)

are shown in Table 6.3.
The observation in these two samples of Fµ oscillations which disappear and

then reappear is puzzling. While a definitive mechanism has not been identified, it
is probably possible to rule out an electronically mediated effect since, for T � TN,
the Cu moment fluctuations will be outside the muon time-window. An explanation
could involve nearby nuclear moments, possibly influenced by a thermally-driven
structural distortion or instability.

A similar study of [Cu(HF2)(pyz)2]SbF6 is shown in Fig. 6.6 (g), (h) and (i).
In this material, the oscillations appear not to vanish over the temperature range
studied, though a brief disappearance at T ≈ 200 K cannot be ruled out. Instead, the
oscillations show an apparently monotonic increase in damping with temperature,
and the fitted bond length does not follow Eq. (6.9). The shaded region in Fig. 6.6 (h)
and (i) has no upper bound, though we cannot rule out a constraint at T > 250 K.
The pure relaxation λ0 is omitted because there is no region where the Fµ oscillations
are sufficiently damped for Eq. (6.8) to be a good parametrisation.

6.4 Muon site determination

Combining the data measured above and below the transition in these materials
allows us to attempt to construct a self-consistent picture of possible muon sites.
The observed dipole–dipole observations above TN suggest that at least one muon
stopping site is near a fluorine ion. We consider three classes of probable muon site:
Class I sites near the fluorine ions in the HF2 groups, Class II sites near the pyrazine
rings, and Class III sites near the anions at the centre of the pseudocubic pores.
Comparison of Tables 6.1 and 6.2 show that the dominant amplitude component
for T > TN arises from dipole–dipole oscillatory component p1e−λtDz(t) and from
the fast-relaxing component p3e−λ3t for T < TN, and that these are comparable in
amplitude. It is therefore plausible to suggest that these two signals correspond to
contributions from the same Class I muon sites near the HF2 groups. Moreover,
the analysis of the T > TN spectra in the previous section implies that this site
lies rµ–F ≈ 0.11 nm from an F in the HF2 groups. The remainder of the signal
(the oscillating fraction below TN and the Gaussian relaxation above) can also be
identified, suggesting that the sites uncoupled from fluorine nuclei (Classes II
and/or III) result in the magnetic oscillations observed for T < TN.

Further, the evidence from Fµ oscillations makes the occurence of Class III muon
sites unlikely. The fact that spectra observed for T > TN in the X− = ClO−4 material
are nearly identical to those in all other compounds, in which X contains fluorine,
suggest that the muons do not stop near the anions. Moreover, as discussed in
Secs. 7.1 and 7.2 below, no Fµ oscillations are observed in [Cu(pyz)2(pyo)2]X2 (Y− =
BF−4 , PF−6 ) or [Cu(pyo)6](BF4)2, suggesting that muons do not stop preferentially
near these fluorine-rich anions either. We can therefore rule out the existence of

77



6. Quasi–two-dimensional molecular magnets [Cu(HF2)(pyz)2]X

A
(t
)

(%
)

[Cu(HF2)(pyz)2]BF4 (a)

0.1 0.12

0.35 0.3 0.25 0.2 0.15

νd (MHz)

(b)

0

50

100

150

200

250

300

T
(K

)

0 0.5 1

(c)

λF−µ

λ0

A
(t
)

(%
)

[Cu(HF2)(pyz)2]ClO4 (d)

0.1 0.12

(e)

0

50

100

150

200

250

300

T
(K

)

0 0.5 1

(f)

λF−µ

λ0

A
(t
)

(%
)

0 5

t (µs)

[Cu(HF2)(pyz)2]SbF6 (g)

0.1 0.12

rF−µ (nm)

(h)

0

50

100

150

200

250

300

T
(K

)

0 0.5 1

λ (MHz)

(i)

λF−µ

Figure 6.6: (caption on next page)
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6.4. Muon site determination

Figure 6.6: (figure on previous page) (a) Muon–fluorine dipole–dipole oscillations
in [Cu(HF2)(pyz)2]BF4 over a temperature range 2 ≤ T ≤ 300 K. Asymmetry
spectra are displaced vertically so as to approximately align with the temperature
scale on plots (b) and (c). Ticks on the y-axis of (a) denote 1% asymmetry. Plot
(b) shows the fitted value for rF–µ as a function of temperature. The line shown is
a fit to the low-T points with a T2 scaling law, Eq. (6.9). The upper x-axis shows
values of the dipole frequency, νd, which correspond to the lower x-axis values of
rF–µ. Plot (c) shows fitted relaxation rates λF–µ and λ0, referring to the relaxation
of the Fµ function Dz(t) in Eq. (6.6), and the pure relaxation in Eq. (6.8). Shaded
regions indicate temperatures where Q = 2πλF–µ/ωd > 2, roughly parametrising
the disappearance of the oscillations. (d), (e) and (f) follow (a), (b) and (c), but show
data for [Cu(HF2)(pyz)2]ClO4. (g), (h) and (i) similarly, but for [Cu(HF2)(pyz)2]SbF6
over the range 5 ≤ T ≤ 250 K. The 5 K A(t) plot is omitted because the background
is raised substantially by approach to the transition to LRO.

Class III muon sites and propose that the magnetic oscillations measured for T < TN
most probably arise due to Class II sites found near the pyrazine ligands.

Below TN, the measured muon precession frequencies allow us to determine
the magnetic field at these Class II muon sites via ν = γµB/2π. Simulating the
magnetic field inside the crystal therefore allows us to compare these B-fields with
those predicted for likely magnetic structures and may permit us to constrain the
ordered moment. For the case of our ZF measurements in the antiferromagnetic
state, the local magnetic field at the muon site Blocal is given by

Blocal = Bdipole + Bhyperfine. (6.10)

The spin density giving rise to the contact hyperfine field Bhyperfine is particularly
difficult to estimate accurately in complex molecular systems, but it is probable for
insulating materials such as these that the spin density on the copper ion is well
localised and so the hyperfine contribution is ignored in this analysis. The dipole
field Bdipole can then be considered the sole contribution to local magnetic field,
and evaluated as described in Chapter 3.

Although these materials are known to be antiferromagnetic from their negative
Curie–Weiss temperatures and zero spontaneous magnetisation at low tempera-
tures [91, 90], their magnetic structures are unknown. Dipole-field simulations
were therefore performed for a variety of trial magnetic structures with µ = µB.
Results are analysed using the Bayesian scheme outlined in Chapter 3. We begin
by allowing the possibility that the magnetic precession signal could arise from
any of the possible classes of muon site identified above. Random positions in the
unit cell were generated and dipole fields calculated at these. To prevent candidate
sites lying too close to atoms we constrain all sites such that rµ–A > 0.1 nm where A
is any atom. Possible Class I muon sites were identified with rµ–F = r0 ± 0.01 nm
(where r0 is the muon–fluorine distance established from Fµ oscillations) and pos-
sible Class II sites were selected with the constraint that 0.10 ≤ rµ–C,N ≤ 0.12 nm.
The predicted probability density function (pdf) of muon precession frequencies
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Figure 6.7: Probability density functions of muon precession frequencies at positions
close to likely muon stopping sites in [Cu(HF2)(pyz)2]X with Cu2+ moments µ = µB.
The graphs show dipole fields near the fluorine or oxygen atoms in the negative
anions; near the fluorine atoms in the bifluoride ligands; and near the carbon and
nitrogen atoms, as a proxy for proximity to the pyrazine ring. The type of line
indicates the compound for which the calculation was performed. The muon site is
constrained to be close to particular atoms, indicated by line color. The shaded areas
indicate ranges of fitted frequencies as T → 0; two frequencies νBF4

1,2 represent those

observed where X− = BF−4 , and νPF6
1,2 those observed in the X− = PF−6 analogue.
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(resulting from the magnitudes of the calculated fields) are plotted in Fig. 6.7, with
the observed frequencies superimposed. Results are shown for a trial magnetic
structure comprising copper spins lying in the plane of the pyrazine layers and
at 45° to the directions of the pyrazine chains, and with spins arranged antiferro-
magnetically both along those chains and along the HF2 groups. This candidate
structure is motivated by analogy with [Cu(pyz)2](ClO4)2, which also comprises
Cu2+ ions in layers of 2D pyrazine lattices [102], and with the parent phases of the
cuprate superconductors [89], which are also two-dimensional Heisenberg systems
of S = 1

2 Cu2+ ions. Other magnetic structures investigated give qualitatively similar
results. From Fig. 6.7 it is clear that the only sites with significant probability density
near to the observed frequencies are those lying near the anions (i.e. Class III sites)
which do not appear to be compatible with our data. The more plausible muon
sites correspond to higher frequencies than those observed. Our conclusion is that
it is likely that the Cu2+ moments are rather smaller than the µB assumed in this
initial calculation.

If we accept that the muon sites giving rise to magnetic precession are near
the pyrazine groups then we may use this calculation to constrain the size of the
copper moment. Since ν is obtained from experiment, what we would like to know
is g(µ|ν), the pdf of copper moment µ given the observed ν. This can be obtained
from our calculated f (ν/µ) using Bayes’ theorem, which yields

g(µ|ν) =
1
µ f (ν/µ)´ µmax

0
1
µ′ f (ν/µ′)dµ′

, (6.11)

where a prior probability is assumed for the copper moment that is uniform between
zero and µmax. We take µmax = 2µB, although the results are insensitive to the
precise value of µmax as long as it is reasonably large. When multiple frequencies
{νi} are present in the spectra, it is necessary to multiply their probabilities of
observation in order to obtain the chance of their simultaneous observation, so we
evaluate

g(µ|{νi}) ∝ ∏
i

ˆ νi+∆νi

νi−∆νi

f (νi/µ)dνi , (6.12)

where ∆νi is the error on the fitted frequency. Results are shown in Fig. 6.8, along
with the dipole-field pdfs which gave rise to them. By inspection of the pdfs, the
copper moment is likely to be µ . 0.5µB. The dipole-field simulations results also
lend weight to our contention that the oscillatory signal cannot arise from the sites
that also lead to the Fµ component above TN. If this were the case then the most
likely moment on the copper would be µCu . 0.2µB, which seems unreasonably
small. Moment sizes of µ . 0.5µB were also observed for the 2DSLQHA system
La2CuO4 (a recent estimate [103] from neutron diffraction gave [0.42± 0.01]µB),
despite the predictions of 0.6µB from spin wave theory and Quantum Monte
Carlo [104]. It was suggested in that case [104] that disorder might play a role in
reducing the moment sizes; an additional possible mechanism for this suppression
is ring exchange [105, 106].

One limitation of this analysis is that the mechanism for magnetic coupling of
copper ions through the pyrazine rings is postulated to be via spin exchange, in
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Figure 6.8: Probability density functions for muons in the putative oscillating sites
near the pyrazine rings in [Cu(HF2)(pyz)2]BF4 (a) for muon precession frequency
ν assuming that the moment on the copper site µ = µB, created fom a histogram
of dipole fields evaluated at points satisfying the constraints detailed in the text;
and (b) for the moment on the copper sites given the frequencies actually observed,
evaluated using the pdfs in (a) and Eq. (6.12). Lines represent trial magnetic
structures. All exhibit antiferromagnetic coupling through both the bifluoride and
pyrazine exchange paths, whilst (i) has copper moments pointing at 45◦ to the
pyrazine grid, (ii) has moments along one of the pyrazine grid directions (a or b),
and (iii) has copper moments pointing along the bifluoride axis (c).

which small magnetic polarisations are induced on intervening atoms [107]. Density
functional theory calculations estimate that these are small, with the nitrogen and
carbon moments estimated at µC ≈ 0.01µB and µN ≈ 0.07µB, respectively [108].
However, their effect may be non-negligible: they may be significantly closer to the
muon site than a copper moment, and dipole fields fall off rapidly, as 1/r3. Further,
since much of the electron density in a pyrazine ring is delocalised in π-orbitals, the
moments may not be point-like, as assumed in our dipole-field calculations. This
may also lead to overlap of spin density at the muon site and result in a nonzero
hyperfine field.
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Chapter 7

Other quasi–two-dimensional
molecular magnets

In addition to the [Cu(HF2)(pyz)2]X systems examined in the previous chapter, a
wide range of related molecular materials can be fabricated which display quasi–two-
dimensional magnetic interactions. This type of investigation of a variety of related
materials allows a systematic evaluation not only of the molecular magnetism itself,
but also the use of muon techniques to study it. In particular, the range of differing
dimensionalities present in molecular systems and how this relates to the critical
exponent β, often derived from µ+SR data, is examined.

This chapter reports the results of µ+SR measurements on other quasi-2D sys-
tems. First, [Cu(pyz)2(pyo)2]Y2, with Y− = BF−4 or PF−6 , in which pyo ligands bridge
Cu(pyz)2 planes. Then, the quasi-2D non-polymeric compounds [Cu(pyo)6]Z2,
where Z−=BF−4 , ClO−3 or PF−6 are examined. I also investigate materials in which
either Ni2+ (S = 1) or Ag2+ (S = 1

2) form the magnetic species in the quasi-2D
planes rather than Cu2+.

7.1 [Cu(pyz)2(pyo)2]Y2

In this section, I report the magnetic behaviour of another family of molecular
systems which shows quasi-2D magnetism, but for which the interlayer groups are
very different and arranged in a completely different structure, resulting in a 2D
coordination polymer. This system is [Cu(pyz)2(pyo)2]Y2, where Y− = BF−4 , PF−6 .
As with the previous case, S = 1

2 Cu2+ ions are bound in a 2D square lattice of
[Cu(pyz)2]2+ sheets lying in the ab-plane. Pyridine-N-oxide (pyo) ligands [shown
in Fig. 5.1 (b)] protrude from the copper ions along the c-direction, perpendicular
to the ab-plane in the Y− = PF−6 material, but making an angle β− 90 ≈ 29◦ with
the normal in Y− = BF−4 . The anions then fill the pores remaining in the structure.
The structure of [Cu(pyz)2(pyo)2](BF4)2 is shown in Fig. 7.1.

In a typical synthesis1, an aqueous solution of CuY2 hydrate (Y− = BF−4 or PF−6 )
1Samples studied in this chapter were synthesised by J. L. Manson.
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Figure 7.1: Structure of [Cu(pyz)2(pyo)2](BF4)2. Copper ions lie in 2D square layers,
bound by pyrazine rings. Pyridine-N-oxide ligands protrude from the coppers in a
direction approximately perpendicular to these layers. Tetrafluoroboride ions fill
the pores remaining in the structure. Ion sizes are schematic; copper ions are shown
twice as large for emphasis, and hydrogens have been omitted for clarity.

was combined with an ethanol solution that contained a mixture of pyrazine and
pyridine-N-oxide or 4-phenylpyridine-N-oxide. Deep blue-green solutions were
obtained in each case, and when allowed to slowly evaporate at room temperature
for a few weeks, dark green plates were recovered in high yield. Crystal quality
could be improved by sequential dilution and collection of multiple batches of
crystals from the original mother liquor. The relative amounts of pyz and pyo
were optimised in order to prevent formation of compounds such as CuY2(pyz)2 or
[Cu(pyo)6]Y2.

Samples were measured in the LTF apparatus at SµS. Example data measured
on [Cu(pyz)2(pyo)2]Y2 are shown in Fig. 7.2, where oscillations are observed in A(t)
at a single frequency below TN. Data were fitted to a relaxation function

A(t) = A0

(
p1 cos(2πν1t)e−λ1t + p2e−λ2t + p3e−λ3t

)
+ Abg. (7.1)

The small amplitude fraction p1 < 10% for both samples refers to muons stopping
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7. Other quasi–two-dimensional molecular magnets
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Figure 7.2: Example data and fits for [Cu(pyz)2(pyo)2]Y2. From left to right: (a)
and (d) show sample asymmetry spectra A(t) for T < TN along with a fit to
Eq. (7.1); (b) and (e) show the frequency ν as a function of temperature; and (c)
and (f) show relaxation rates λi as a function of temperature. The relaxation rates
λ1, associated with the oscillation, and λ3, the fast-relaxing initial component, do
not vary significantly with T and are not shown. Only a slight trend in λ2 in the
Y− = PF−6 material [graph (f)] is observed.

in a site or set of sites with a narrow distribution of quasi-static local magnetic
fields, giving rise to the oscillations; p2 ≈ 50% is the fraction of muons stopping
in a class of sites giving rise to a large relaxation rate 30 . λ . 60 MHz and
p3 ≈ 50% represents the fraction of muons stopping in sites with a small relaxation
rate λ3 ≈ 1 MHz. The data from these compounds fit best with φ = 0, and it is
thus omitted from this expression. Frequencies obtained from fitting the data to
Eq. (7.1) were then modelled with Eq. (4.3). The results of these fits are shown in
Fig. 7.2, and Table 7.1.

Our results show that [Cu(pyz)2(pyo)2](BF4)2 has a transition temperature TN =
1.5± 0.1 K and a quasi-static magnetic field at the muon site ν1(T = 0) = 1.4±
0.1 MHz. No quantities other than ν1 show a significant trend in the temperature
region 0.1 ≤ T ≤ 1.6 K. Above the transition, purely relaxing spectra are observed,
displaying no Fµ oscillations. As suggested above, this makes the existence of muon
sites near the anions unlikely. A critical exponent of β = 0.25± 0.10 is found, where
the large uncertainty results in part from the difficulty in fitting the A(t) data in
the critical region.

Our results for [Cu(pyz)2(pyo)2](PF6)2 show that the transition temperature
is slightly higher at TN = 1.72 ± 0.02 K and the oscillations occur at a lower
frequency of ν1(T = 0) = 1.07± 0.03 MHz. The relaxation rates λ2 and λ3 also
decrease in magnitude as temperature is increased, settling on roughly constant
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7.2. [Cu(pyo)6]Z2

values λ2 ≈ 0.6 MHz and λ3 ≈ 15 MHz for T > TN. No other quantities show a
significant trend in the temperature region 0.2 ≤ T ≤ 1.7 K. Above the transition,
relaxing spectra devoid of Fµ oscillations are again observed. The critical exponent
β = 0.22± 0.02.

The small amplitude of the oscillations, common to both samples, might be
explained in a number of ways. The materials may undergo long-range ordering
but there may be an increased likelihood of stopping in sites where the magnetic
field nearly precisely cancels. Alternatively, a range of similar muon sites may be
present with a large distribution of frequencies, or alternatively the presence of
dynamics, washing out any clear oscillations in large fractions of the spectra and
instead resulting in a relaxation. Finally, it is not possible to exclude the possibility
that only a small volume of the sample undergoes a magnetic transition; this may
indicate the presence of a small impurity phase, possibly located at either grain
boundaries or, given that this is a powder sample, near the crystallites’ surfaces.
The behaviour of fitted parameters in these materials is qualitatively similar to that
reported in CuCl2(pyz), where there is also a relatively small precessing fraction of
muons and little variation in relaxation rates as TN is approached from below [95].

7.2 [Cu(pyo)6]Z2

The next example is not a coordination polymer, but instead forms a three-dimensional
structure of packed molecular groups. The molecular magnet [Cu(pyo)6]Z2, where
Z− = BF−4 , ClO−3 , PF−6 , comprises Cu2+ ions on a slightly distorted cubic lat-
tice, located in [Cu(pyo)6]2+ complexes, and surrounded by octahedra of oxygen
atoms [109]. The structure is shown in Fig. 7.3. This approximately cubic structure,
which arises from the molecules’ packing, might suggest that a three-dimensional
model of magnetism would be appropriate. In fact, although the observed bulk
properties of [M(pyo)6]X2 where M2+ = Co2+, Ni2+ or Fe2+ are largely isotropic,
the copper analogues display quasi–low-dimensional, S = 1

2 Heisenberg antifer-
romagnetism [109]. Weakening of superexchange in certain directions, and thus
the lowering of the systems’ effective dimensionality, is attributed to lengthening
of the superexchange pathways resulting from Jahn–Teller distortion of the Cu–O
octahedra, which is observed in structural and EPR measurements [111, 110]. At
high temperatures, (T & 100 K), these distortions are expected to be dynamic
but, as T is reduced (to ≈ 50 K), they freeze out. The anion Z− determines the
nature of the static Jahn–Teller elongation. The Z− = BF−4 material displays fer-
rodistortive ordering which, in combination with the antiferromagnetic exchange,
gives rise to 2D Heisenberg antiferromagnetic behaviour [109, 112]. By contrast,
Z− = ClO−4 , NO−3 (neither of which is investigated here) display antiferrodistortive
ordering [111], which gives rise to quasi-1D Heisenberg antiferromagnetism [109].
All of the samples investigated were measured in the LTF spectrometer at SµS.

In the Z− = BF−4 compound, below a temperature TN, a single oscillating
frequency is observed, indicating a transition to a state of long-range magnetic
order. Example data above and below the transition, along with fits, are shown in
Fig. 7.4 (a). Data were fitted to Eq. (7.1), and the frequencies extracted from the
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7. Other quasi–two-dimensional molecular magnets

a

b

c

B C N O F Cu

Figure 7.3: Structure of [Cu(pyo)6](BF4)2, viewed along the three-fold (c-) axis, after
Ref. 110. Copper ions are surrounded by octahedra of six oxygens, each part of a
pyridine-N-oxide ligand; [Cu(pyo)6]2+ complexes space-pack with BF−4 stabilising
the structure. Ion sizes are schematic; copper ions are shown twice as large for
emphasis, and hydrogens have been omitted for clarity. As indicated in the top left,
the a and b directions lie in the plane of the paper, separated by γ = 120◦, whilst
the c direction is out of the page.
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7.2. [Cu(pyo)6]Z2
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Figure 7.4: Example data and fits for [Cu(pyo)6](BF4)2. From left to right: (a) shows
sample asymmetry spectra A(t) for T < TN and T > TN, along with fits to Eq. (7.1)
and Eq. (7.2), respectively; (b) shows frequency as a function of temperature; and
(c) shows relaxation rate λ2 as a function of temperature; λ1 was held fixed during
the fitting procedure, and λ3 persists for T > TN. In the ν(T) plot, error bars are
included on the points but in most cases they are smaller than the marker being
used.

procedure fitted as a function of temperature to Eq. (4.3), as shown in Fig. 7.4 (b).
This procedure identifies a transition temperature TN = 0.649± 0.005 K. The only
other parameter found to vary significantly in the range 20 mK ≤ T ≤ TN was
λ2, shown in Fig. 7.4 (c). The fitted parameters are shown in Table 7.1. We may
compare this with the result of an earlier low-temperature specific heat study [109]
which found a very small λ-point anomaly at TN = 0.62(1)K, slightly lower than
our result. Fitting the magnetic component of the heat capacity with the predictions
from a two-dimensional Heisenberg antiferromagnet gives J/kB = −1.10(2)K, and
similar analysis of the magnetic susceptibility [109] yields J/kB = 1.08(3)K. Using
these values, together with the muon estimate of TN and Eq. (5.3), allows us to
estimate the inter-plane coupling, J⊥/J = 0.26(1). (Using the value of TN from heat
capacity results in an estimate J⊥/J = 0.21(2).)

For temperatures TN < T ≤ 1 K, the spectra are well described by a relaxation
function

A(t) = A0(p1e−λt + p2e−σ2t2
) + Abg, (7.2)

comprising an initial fast-relaxing component with λ ≈ 20 MHz, and a Gaussian
relaxation with σ ≈ 0.4 MHz corresponding to the slow depolarisation of muon
spins due to randomly-orientated nuclear moments.

The Z− = ClO−3 material also shows evidence for a magnetic transition, although
in this case oscillations in the muon asymmetry are not observed. Instead a
discontinuous change in the relaxation which seems to point towards an ordering
transition is seen. Example asymmetry spectra are shown in Fig. 7.5 (a) and data at
all measured temperatures are well described with the relaxation function

A(t) = A0e−λt + Abg . (7.3)

Evidence for a magnetic transition comes from the temperature evolution of λ
[Fig. 7.5(b)], where the relaxation decreases with increasing temperature until it
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Figure 7.5: Example data and fits for [Cu(pyo)6](ClO3)2. Representative A(t) spectra
for T < TN and T > TN, along with fits to Eq. (7.3), are shown in (a), whilst the
value of the relaxation rate, λ, as a function of temperature is shown in (b).
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Figure 7.6: Sample asymmetry spectrum for [Cu(pyo)6](PF6)2 measured at T =
0.02 K. The spectra remain indistinguishable from this across the range of tempera-
tures examined, 0.02 K ≤ T ≤ 1 K.

settles at T ≈ 0.3 K, on a value λ ≈ 0.5 MHz. It is likely that this tracks the internal
magnetic field inside the material, and is suggestive of TN = 0.30(1)K.

The final member of this family studied, Z− = PF−6 , shows no evidence for a
magnetic transition over the range of temperatures studied, 0.02 K ≤ T ≤ 1 K. An
example spectrum is shown in Fig. 7.6. The data resemble the above-transition data
measured in the BF4 and ClO3 compounds and it therefore seems likely that the
paramagnetic state persists to the lowest temperature measured.

7.3 Ag(pyz)2(S2O8)

The examples so far have used Cu2+ (3d9) as the magnetic species. An alternative
strategy is to employ Ag2+ (4d9) which also carries an S = 1

2 moment. This
idea has led to the synthesis of Ag(pyz)2(S2O8), which comprises square sheets of
[Ag(pyz)2]2+ units spaced with S2O8

2− anions [113]. Each silver ion lies at the centre
of an elongated (AgN4O2) octahedron, where the Ag–N bonds are significantly
shorter than the Ag–O. Preparation details can be found in Ref. 114.
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Figure 7.7: Example data and fits for Ag(pyz)2(S2O8). From left to right: (a) shows
sample asymmetry spectra A(t) for T < TN along with a fit to Eq. (7.4); (b) shows
the frequency as a function of temperature; and (c) shows relaxation rates λi as a
function of temperature. Filled circles show the relaxation rate λ1, which relaxes
the oscillation. The filled triangles correspond to the relaxation λ2.

Measurements were made using the GPS instrument at SµS. Example muon
data, along with fits to various parameters, are shown in Fig. 7.7. Asymmetry
oscillations are visible in spectra taken below a transition temperature TN. The data
were fitted with a relaxation function

A(t) = A0

(
p1 cos(2πν1t + φ1)e−λ1t + p2e−λ2t

)
+ Abg, (7.4)

comprising a single damped oscillatory component, a slow-relaxing component,
and a static background signal. The onset of increased relaxation λ1 as the transition
is approached from below leads to large statistical errors on fitted values, as is
evident in Fig. 7.7 (c). The relaxation λ2 decreases with increasing temperature.
Fitting to Eq. (4.3) allows the critical parameters β = 0.19± 0.02 and TN = 7.8(3)K
to be determined. Fitted values are shown in Table 7.1.

The in-plane exchange J is too large to be determined with pulsed fields [113]:
M(B) does not saturate in fields up to 64 T. However, fitting χ(T) data allows an
estimate of the exchange J/kB ≈ 53 K (and thus, in conjunction with g measured by
EPR, the saturation field Bc is estimated to be 160 T). Thus, kBTN/J = 0.148± 0.006.
Estimation of the exhange anisotropy with Eq. (5.3) yields |J⊥/J| ∼ 10−6, but this
very small ratio of ordering temperature to exchange strength is outside the range
in which the equation is known to yield accurate results. The alternative method
of parametrising the low dimensionality in terms of correlation length at the Néel
temperature (see Sec. 5.3) yields ξ(TN)/a = 1000± 300.

7.4 [Ni(HF2)(pyz)2]X
In order to investigate the influence of a different spin state on the magnetic cation
in the [M(HF2)(pyz)2]X architecture the [Ni(HF2)(pyz)2]X (X− = PF−6 , SbF−6 ) system
has been synthesised [92]. These materials are isostructural with the copper family
discussed in Chapter 6, but contain S = 1 Ni2+ cations.
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Figure 7.8: Example data and fits for M = Ni magnets. From left to right: (a) and
(d) show sample asymmetry spectra A(t) for T < TN along with a fit to Eq. (6.1); (b)
and (e) show frequencies as a function of temperature [no data points are shown for
the second line because this frequency ν2 was held in fixed proportion to the first,
ν1 (see text)]; and (c) and (f) show relaxation rate λ3 as a function of temperature.
In the ν(T) plot, error bars are included on the points but in most cases they are
smaller than the marker being used. The inset to (f) shows ν2 ≡ ν plotted against
λ3 ≡ λ on a log–log scale. The black line shows λ = ν2 .

X TN (K) ν1 ν2 λ3 p1 p2 p3 β α

PF6 6.0(4) 12.0 9.3 90 15 10 75 0.25(10) 2.8(2)
SbF6 12.26(1) 12.3(1) 8.98(1) 80 25 10 65 0.34(4) 3.1(1)

Table 7.2: Fitted parameters for M = Ni magnets. Values of ν1, ν2 and λ3 are given
in MHz. Errors shown are statistical uncertainties on fitting and thus represent
lower bounds. Errors on Ni...PF6 could not be estimated due to the fitting procedure
(see text).
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7.4. [Ni(HF2)(pyz)2]X

Data were taken using the GPS spectrometer at PSI. Example data are shown in
Fig. 7.8. Oscillations are observed at two frequencies below the materials’ respective
ordering temperatures. Data were fitted with a relaxation function

A(t) = A0

[
p1e−λ1t cos(2πν1t) + p2e−λ2t cos(2πP2ν1t)

+p3e−λ3t
]
+ Abge−λbgt. (7.5)

Of those muons which stop in the sample, p1 ≈ 25% indicates the fraction of
the signal corresponding to the high-frequency oscillating state with ν1(T = 0) ≈
12.3 MHz; p2 ≈ 10% corresponds to muons stopping in the low-frequency oscillating
state with ν2(T = 0) ≈ 9.0 MHz; and p3 ≈ 65% represents muons stopping in a site
with a large relaxation rate λ3(T = 0) ≈ 70 MHz. The frequencies were observed
to scale with one-another, and consequently the second frequency was held in
fixed proportion ν2 = P2ν1 during the fitting procedure. The only other parameter
which changes significantly in value below TN is λ3, which decreases with a trend
qualitatively similar to that of the frequencies. Fitting the extracted frequencies to
Eq. (4.3) allows the transition temperature TN = 12.25± 0.03 K and critical exponent
β = 0.34± 0.04 to be extracted. In contrast to the copper family studied in Chapter 6,
the relation λ ∝ ν2 holds true, suggesting that a field distribution whose width
diminishes with increasing temperature is responsible for the variation in λ, and
that dynamics are relatively unimportant in determining the muon response. This
is shown graphically in the inset to Fig. 7.8 (f), where a plot of frequency against
relaxation rate lies on top of a line representing a λ = ν2 relationship. The phase φ
required in previous fits (e.g. Eq. (6.1)) is not necessesary in fitting these spectra,
and is set to zero. Fitted parameters are shown in Table 7.2.

Data for the X− = PF−6 compound was subject to similar analysis, fitting spectra
below TN to Eq. (7.5), this time with p1 ≈ 15%, ν1(T = 0) ≈ 12.0 MHz; p2 ≈ 10%,
ν2(T = 0) ≈ 9.3 MHz; and p3 ≈ 75%, λ3(T = 0) ≈ 100 MHz. The phase φ again
proved unnecessary. These spectra do not show as sharp a transition as the X− =
SbF−6 compound, with the oscillating fraction of the signal decaying before the
appearance of spectra whose different character indicates clearly that the sample is
above TN. The available data do not allow reliable extraction of critical parameters,
but it is possible to estimate 5.5 K ≤ TN ≤ 6.2 K and 0.15 ≤ β ≤ 0.4. Fitted values
are shown in Table 7.2.

Another method to locate the transition is to observe the amplitude of the muon
spectra at late times as a function of temperature. The transition is then from zero
in the unordered state to the ‘1

3-tail’ characteristic of LRO, described in Sec. 2.4.1.
Spectra were fitted with the simple relaxation function A(t > 5 µs) = Abge−λbgt,
and then the amplitudes obtained were fitted with a Fermi-like step function

A(t > 5 µs, T) = A2 +
A1 − A2

e(T−Tmid)/w + 1
, (7.6)

which provides a method of modelling a smooth transition between A1 = A(T <
TN) and A2 = A(T > TN). The fitted amplitudes and Fermi function are shown
in Fig. 7.9. The fitted mid-point Tmid = 6.4± 0.1 K, and width w = 0.3± 0.1 K.
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Figure 7.9: The asymmetry at late times A(t > 5 µs) measured in Ni(HF2)(pyz)2PF6
along with a fit to Eq. (7.6). Overlaid are regions corresponding to the range of
values found by fitting the frequency of oscillations as a function of temperature
with Eq. (4.3) (5.5 K ≤ TN ≤ 6.2 K), and the value of the λ-like anomaly in
specific heat capacity (SHC) measurements with a representative error of 0.1 K
(6.1 K ≤ TN ≤ 6.3 K). The darker area represents the overlap between these regions.

Spin relaxation peaks just above TN, and so one would expect that TN lies at the
lower end of this transition. Thus, the µ+SR analysis suggests TN = 6.1± 0.3 K
(i.e. Tmid − w± w). This is consistent with the estimate from νi(T) and the value
TN = 6.2 K obtained from heat capacity [92].

Members of the M = Ni family exhibit Fµ oscillations rather like their copper
counterparts, with a similar fraction of the muons in sites giving rise to dipole–
dipole interactions. The results of these fits are shown along with those from Cu
compounds in Table 6.2. Because the nickel data were measured at temperatures
different from those of the copper compounds and, as described in Sec. 6.3, the
muon–fluorine bond length in the compound is sensitive to changes in temperature,
care must be taken when comparing these values to those of the Cu family. Linearly
interpolating the bond lengths for [Cu(HF2)(pyz)2]SbF6 at 9 K and 29 K to find an
approximate value of the bond length at 19 K yields rµ–F(T = 19 K) = 0.1062±
0.0002 nm (where the error represents a combination of the statistical errors on the
fits and variation recorded in thermometry, and is thus a lower bound), very similar
to that measured for [Ni(HF2)(pyz)2]SbF6, rµ–F(T = 19 K) = 0.1068± 0.0004 nm.

In spite of being isostructural to the [Cu(HF2)(pyz)2]X systems, the dimensional-
ity of these Ni variants is ambiguous. Susceptibility data fit acceptably to a number
of models, and ab initio theoretical calculations are suggestive of one-dimensional be-
haviour, dominated by the exchange along the bifluoride bridges. This is discussed
more fully in Ref. 92.
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Figure 7.10: Quantification of the two-dimensionality of the materials in this thesis
and comparison with other notable 2DSLQHA systems. Filled circles show materials
investigated in this thesis; open circles show other molecular materials; and filled
triangles show inorganic systems. The low dimensionality is parametrised firstly
with the directly experimental ratio TN/J, and then with predictions derived from
quantum Monte Carlo simulations for both the exchange anisotropy, J⊥/J [Eq. (5.3)],
and the correlation length of an ideal 2D Heisenberg antiferromagnet with the
measured J at a temperature TN [Eq. (5.4)]. The greying-out of the axis for J⊥/J
indicates where Eq. (5.3) is extrapolated beyond the range for which it was originally
derived [86]. Values of kBTN/J for the other materials were evaluated from
Refs. 115, 116, 117.
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7.5 Discussion

Fig. 7.10 collects the results from this and the preceding chapter and shows how
isolation between two-dimensional layers varies over a variety of systems; those
presented in this thesis, molecular materials studied elsewhere, and inorganic mate-
rials. The primary axis is the experimental ratio kBTN/J. Also shown are the the
ratios of the in-plane and inter-plane exchange interactions, J⊥/J, and the correla-
tion length at the transition, ξ(TN)/a, extracted from fits to quantum Monte Carlo
simulations. Of the materials in this thesis, the least anisotropic is [Cu(pyo)6](BF4)2,
whose low transition temperature is caused by a small exchange constant rather
than particularly high exchange anisotropy. Below this, [Cu(pyo)2(pyz)2](PF6)2
exhibits a ratio kBTN/J ≈ 0.4. The members of the [Cu(HF2)(pyz)2]X family with
octahedral anions have kBTN/J ≈ 0.33, rather more than the kBTN/J ≈ 0.25 shown
by their counterparts with tetrahedral anions (as has been noted previously [80]).
This makes the latter comparable to highly 2D molecular systems [Cu(pyz)2](ClO4)2
and CuF2(H2O)2(pyz), and the cuprate parent compound La2CuO4. The proto-
typical inorganic 2D system Sr2CuO2Cl2 exhibits kBTN/J = 0.177 ± 0.009, and
thus ξ(TN)/a = 280± 90. The most 2D material investigated in these chapters,
Ag(pyz)2(S2O8), has kBTN/J = 0.148 ± 0.006, implying ξ(TN)/a = 1000 ± 300,
with the added benefit that the magnetic field required to probe its interactions
is far closer to the range of fields achievable in the laboratory. By these measures,
molecular magnets provide some excellent realisations of the 2DSLQHA, with
Ag(pyz)2(S2O8) being the best realisation found to date.

Another method of examining the dimensionality of these systems is to con-
sider their behaviour in the critical region. The critical exponent β is a quantity
frequently extracted in studies of magnetic materials, and it is often used to make
inferences about the dimensionality of the system under study. In the critical
region near a magnetic transition, an order parameter Φ, identical to the (staggered)
magnetisation, would be expected to vary as

Φ(T) = Φ0

(
1− T

TN

)β

. (7.7)

In simple, isotropic cases, the value of β depends on the dimensionality of the
system, d, and that of the order parameter, D. For example, in the 3D Heisenberg
model (d = 3, D = 3), β = 0.367, whilst in the 2D Ising model (d = 2, D = 1),
β = 1

8 . Since the muon precession frequency is proportional to the local field, it
is also proportional to the moment on the magnetic ions in a crystal, and can be
used as an effective order parameter. However, Eq. (7.7) would only be expected
to hold true in the critical region. The extent of the critical region (defined as that
region where simple mean-field theory does not apply) can be parametrised by the
Ginzburg temperature TG, which is related to the transition temperature Tc by [118]

|TG − Tc|
Tc

=

[(
ξ

a

)d (∆C
kB

)] 2
d−4

, (7.8)
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Figure 7.11: Critical exponent β, as commonly extracted from Eq. (4.3), plotted
against the experimental ratio kBTN/J, indicative of exchange anisotropy. Bright
filled circles indicate [Cu(HF2)(pyz)2]X materials examined in Chapter 6, whilst
darker circles indicate other materials studied in this work: [Cu(pyz)2(pyo)2]BF4
(Sec. 7.1); [Cu(pyo)6](BF4)2 (Sec. 7.2); Ag(pyz)2(S2O8) (Sec. 7.3). Open circles indicate
other molecular materials: CuF2(H2O)2(pyz) (Ref. 119); [Cu(pyz)2](ClO4)2 (Ref. 82).

where d is the dimensionality, ξ is the correlation length and ∆C is the discontinuity
in the heat capacity. Quantum Monte Carlo simulations suggest [78] that ∆C/kB ≈
J⊥/J. It follows that for d = 3, where ∆C/kB ≈ 1 we have |TG − Tc| /Tc ≈ (ξ/a)−6,
giving rise to a narrow critical region. In two dimensions, we have |TG − Tc| /Tc ≈
(ξ/a)−2(∆C/kB)

−1. Anisotropic materials with small J⊥/J only show a small heat
capacity discontinuity, while ξ/a grows according to Eq. (5.4). This leads to a
|TG − Tc| /Tc of order 1 for our materials, that is, a larger critical region for 2D (as
compared to 3D) systems.

The large critical region in these materials allows meaningful critical parameters
to be extracted from muon data. The simplest method of doing so is to fit the data
to Eq. (4.3), as has been performed throughout this thesis; alternatively, critical
scaling plots can be used (e.g. Ref. 93), which have been performed; the results of
these were found to be unchanged within error. Since β might be expected to give
an indication of the dimensionality of the hydrodynamical fluctuations in these
materials, a comparison between extracted β and exchange anisotropy parametrised
by kBTN/J is shown in Fig. 7.11. Members of the [Cu(HF2)(pyz)2]X family show
some correlation between the critical exponent and the effective dimensionality
but overall, the relationship is weak. This is probably because β, which is not
a Hamiltonian parameter, is not simply a function of the dimensionality of the
interactions, but probes the nature of the critical dynamics (including propagating
and diffusive modes) which could differ substantially between systems.
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7.6 Conclusions

A systematic study has been presented of muon-spin relaxation measurements on
several families of quasi two-dimensional molecular antiferromagnet, comprising
ligands of pyrazine, bifluoride and pyridine-N-oxide; and the magnetic metal
cations Cu2+, Ag2+ and Ni2+. In each case µ+SR has been shown to be sensitive to
the transition temperature TN, which is often difficult to unambiguously identify
with specific heat and magnetic susceptibility measurements. These measurements
have been combined with predictions of quantum Monte Carlo calculations to
identify the extent to which each is a good realisation of the 2DSLQHA model. The
critical parameters derived from following the temperature evolution of the µ+SR
precession frequencies do not show a strong correlation with the degree of isolation
of the 2D magnetic layers.

The analysis of magnetic ordering in zero applied field in terms of inter-layer
coupling J⊥ presented here does not take into account the effect of single-ion–type
anisotropy on the magnetic order. This has been suggested to be important close
to TN in several examples of 2D molecular magnet [84] where it causes a crossover
to XY-like behaviour. In fact, its influence is confirmed in the nonmonotonic B–T
phase diagram seen in [Cu(HF2)(pyz)2]BF4. It is likely that this is one factor that
determines the ordering temperature of a system, although, as shown in Ref. 84,
it is a smaller effect than the interlayer coupling parametrised by J⊥. The future
synthesis of single crystal samples of these materials will allow the measurement of
the single-ion anisotropies for the materials studied here.

The presence of muon–fluorine dipole–dipole oscillations allows the determi-
nation of some muon sites in these materials, although it appears from our results
that these are not the sites that give rise to magnetic oscillations. However, the Fµ
signal has been shown to be useful in identifying transitions at temperatures well
above the magnetic ordering transition, which appear to have a structural origin.
The fluorine oscillations hamper the study of dynamic fluctuations above TN, which
often appear as a residual relaxation on top of the dominant nuclear relaxation.
It may be possible in future to use RF radiation to decouple the influence of the
fluorine from the muon ensemble to allow muons to probe the dynamics.

The muon-spin precession signal, upon which much of the analysis presented
here is based, is seen most strongly in the materials containing Cu2+ and is more
heavily relaxed in the Ni2+ materials. This is likely due to the larger spin value
in the Ni-containing materials. This is borne out by measurements on pyz-based
materials containing Mn and Fe ions [120], where no oscillations are observed,
despite the presence of magnetic order shown unambiguously by other techniques.
In the case of Mn-containing materials, magnetic order is found with µ+SR through
a change in relative amplitudes of relaxing signals due to a differerence in the
nature of the relaxation on either side of the transition. It is likely, therefore, that
muon studies of molecular magnetic materials containing ions with small spin
quantum numbers will be most fruitful in the future.

Finally, the temperature dependence of the relaxation rates in these materials
has been shown to be quite complex, reflecting the variety of muon sites in these
systems. In favourable cases these data could be used to probe critical behaviour,
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such as critical slowing down, although the unambiguous identification of such
behaviour may be problematic.

Despite these limitations on the use of µ+SR in examining molecular magnetic
systems of the type studied here, it is worth stressing that the technique still
appears uniquely powerful in providing insights into the magnetic behaviour of
these materials and will certainly be useful in the future as a wealth of new systems
are synthesised and the goal of microscopically engineering such materials is
approached.
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Appendix A

Ewald summation

Ewald summation [32] is a method of rapidly evaluating fields at positions in an
infinite lattice. It involves performing two sums, the first in real space over a lattice
which has had an artificial screening added to reduce the importance of long-range
interactions, and the second in reciprocal space. The screening in real space reduces
the number of poles which need to be summed over and, even after the additional
computational effort required to perform the reciprocal space sum is taken into
account, this significantly improves the efficiency of the calculation.

First, Madelung constants are described which, though they are not directly
relevant to the ultimate goal of magnetic dipole field simulation, provide a more
comprehensible system in which to explain the process of Ewald summation. Then,
the Madelung constant of sodium chloride is investigated and used to illustrate the
problem of conditional convergence. Ewald summation is presented as a solution
to this issue, and its generalisation to other quantities, specifically dipole fields, is
then briefly explored.

A.1 Madelung constants

The Madelung energy [121] of a crystal is the electrostatic potential energy of an ion
within it. This is dependent on the charges on and configuration of the ions which
surround it. Evaluating it for an ion i requires performing the sum

Ei = ∑
j 6=i

qiqj

4πε0rj
, (A.1)

where qi,j are the charges on the ith and jth ions, ε0 is the permittivity of free space,
and the index j implies summation over the infinite array of ions in the crystal. In
many simple systems where the charges on ions have the same magnitude but may
take either sign, the sum can be simplified to

E =
q2

4πε0
∑
j 6=i

(±)j

rj
, (A.2)
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M

sodium chloride (NaCl) 1.747 564 595
cesium chloride (CsCl) 1.762 674 773

zincblende (ZnS) 1.638 055 062

Table A.1: Selected Madelung constants, referred to the nearest-neighbour dis-
tance [122].

where (±)j is +1 for a positively-charged ion j and −1 if the ion carries negative
charge. The Madelung constant is then defined as

M = ∑
j 6=i

(±)j
r0

rj
, (A.3)

where r0 is the nearest-neighbour distance in the lattice. It is thus independent of
both the crystal dimensions and the units of charge, meaning that one Madelung
constant applies to many systems but for a prefactor. Thus defined, the constant
must be positive in order for a lattice configuration to be energetically stable.

To take a very simple example, the Madelung constant of a 1D chain of alternat-
ing charges can be expressed analytically:

M = ∑
j 6=i

(±) j
r0

rj

= 2
(

1− 1
2
+

1
3
− 1

4
+ ...

)

= 2 ln 2
= 1.386 294..., (A.4)

where the factor of 2 arises from the fact that the chain of ions extends to infinity
in both directions from the central ion, and using the identity ln (1 + x) = x− x2

2 +
x3

3 − x4

4 ....

A.2 NaCl and conditional convergence
Evaluating Madelung constants for 3D crystals is somewhat more complex. Let
us take as an example sodium chloride, and consider evaluating its Madelung
constant [122]. (Madelung constants for several common crystal structures are
shown in Table A.1.) The NaCl structure comprises two interpenetrating face-
centred cubic lattices, one of Na+ and the other of Cl− ions. This can be imagined
as a simple cubic lattice, with alternating ions on each lattice site, like a three-
dimensional chessboard of charge (see Fig. A.1). The Madelung constant must
be extracted numerically. However, the algorithm chosen has a curious effect on
whether or not it is possible to obtain the answer. An intuitive method for evaluating
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Na

Cl

Figure A.1: The structure of sodium chloride.

this sum would be to take spheres of increasing radius about the origin and add
up the electrostatic contribution from each new shell of ions. Since ions at larger
radii contribute less to the potential energy, it seems logical that the contribution
from each successive shell should fall off and, with sufficiently large radius, an
accurate answer might be obtained. However, this procedure does not result in a
converging series—it has, in fact, been shown mathematically that this series never
converges [123]. If you instead add up successive cubic shells centred on the origin,
the series does converge on the correct answer [123] (as shown in Fig. A.2). This
phenomenon, where convergence is contingent on the order in which you add the
terms in a given series, is known as conditional convergence [124].

In the case of the sodium chloride lattice sum, the additional condition which
needs to be satisfied in order to extract the correct lattice constant is charge neutrality,
and charges in concentric spherical shells very rarely cancel out precisely. However,
in cases where this is approached, so too is the correct value of the Madelung
constant: the 342 648th term in the infinite sum over spherical shells has a net charge
of 2, and the calculated Madelung constant is 1.748 042 464, relatively close to the
correct value [122].

As well as being a mathematical curiosity, conditional convergence is a potential
hazard in performing any lattice sum: experimentation with a variety of summation
methodologies would be required to have any assurance that, if convergence were
achieved at all, the answer arrived at was correct. Worse, those sums which do
converge often do so very slowly; with long-range interactions which fall off as 1/r,
many terms in the sum must be evaluated for every additional decimal place of
accuracy. These issues can be overcome by introducing Ewald summation.
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Figure A.2: Conditional convergence in the Madelung constant for sodium chloride.
Summing over successive spherical shells fails to cause the series to converge, but
the true value is arrived at relatively quickly if cubic sections are considered instead.
The calculated value for the Madelung constant, M, is shown against the radius
of the sphere, or half-edge of the cube, R in terms of nearest-neighbour distances,
equal to half the cubic lattice constant, a. The right y-axis label indicates the true
value, M = 1.748.

A.3 Ewald summation

Ewald summation [32] splits a sum into two parts—a real space sum, which deals
with the short-range part of an interaction, and a reciprocal space sum, which
accounts for long-range component. By sharing the load wisely between these
two different sums, rapid convergence can be achieved and time spent computing
lattice sums much reduced. Another advantage is that, by judicious choice of the
convergence factor which makes the real-space interactions short-range, the sum can
be made absolutely and uniformly convergent for lattice sums involving spherical
shells [124], meaning that choice of summation algorithm is no longer an issue:
naïvely using spheres alway works.

Fig. A.3 illustrates the problem for the case of a 1D lattice comprising alternating
positive and negative charges. We wish to know the electrostatic potential energy
of the central ion in an infinite line of charges. Though this scenario involves a 1D
lattice extending to infinity in the ±x directions, the mathematics which follows is
presented in terms of the 3D vector r for generality. We start by defining a charge
distribution ρi at every lattice site i; simply a δ-function of the appropriate charge qi
located at the site’s position ri,

ρi(r) = qiδ(r− ri). (A.5)

104



A.3. Ewald summation

+ − + V + − +

x

i i + 1 i + 2 i + 3i − 3 i − 2 i − 1

Q
(a)

V
real

x

Q
(d)

V

x

Q
(c)

V
self

x

Q
(b)

V
reciprocal

Figure A.3: The components of an Ewald summation to evaluate the potential of the
ith ion at the centre of an infinite 1D chain of alternating charges. All graphs show
the electric charge Q as a function of distance x along the chain. (a) The real-space
potential Vreal arises from the delta functions of charge in conjunction with the
screening Gaussian distributions of opposite sign. The central ion i is excluded from
this sum. (b) The reciprocal space potential, Vreciprocal, is summed over an infinite
lattice of Gaussians, with opposite sign to those in real space. Being periodic in
real space, it is impossible to exclude the central charge i. (c) The self-term, Vself,
cancels the extraneous Gaussian at i in Vreciprocal. (d) The resulting potential V is
thus calculated from a charge distribution containing only the original δ-functions.
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The first stage of Ewald summation is then shown in Fig. A.3 (a): we reduce the
range of the interactions in real space by adding screening charge distributions over
every ion. A Gaussian screening distribution is usually chosen, though the choice
of function is essentially arbitrary. The integral of this Gaussian charge density is
identical to that of the δ-function point charge it screens, but is of opposite sign. This
means that the net electric charge seen at large distances is zero, thus eliminating
long-range interactions. The distribution used is

fi(r) = qi(α
2/π)

3
2 e−α2(r−ri)

2
, (A.6)

which means that the Gaussian is defined in terms of a screening parameter α.
Higher α implies a narrower Gaussian, more sharply peaked around the δ-function
it screens, and therefore shrouds it more effectively.

The modified charge distribution in real space is therefore

ρ′i(r) = qiδ(r− ri)− qi(α
2/π)

3
2 e−α2(r−ri)

2
. (A.7)

Evaluating the potential at a point r due to this new distribution now involves
three terms: the Coulomb term from the point charge at ri; the charge from the
Gaussian inside the sphere centred on ri with radius |r − ri|, which is equivalent
to that charge collapsed onto another δ-function at ri; and the remaining Gaussian
charge, outside this sphere. This must then be summed over all ions. Thus,

Vreal = ∑
j 6=i

qj

(
1
rj
− 1

rj

ˆ rj

0
ρ(r)dr−

ˆ ∞

rj

ρ(r)
r

dr

)
, (A.8)

which simplifies pleasingly to
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Vreal = ∑
j 6=i

qj

rj
erfc(αrj), (A.9)

where the complementary error function erfc(x) = (2/
√

π)
´ ∞

x e−s2
ds (see Fig. A.4).

The ion i does not interact with itself, and thus the sum is defined over j 6= i. Since
0 < rj < ∞, the complementary error function takes values 1 < erfc(αrj) < 0, and
premultiplying by it will reduce the Coulombic potential. It is worth emphasising
that the Gaussian screening charges and their width as parameterised by α have
no physical significance whatsoever—the screening parameter is chosen purely for
convenience, with an eye to making sure that the sums converge, and do so as
rapidly as possible.

The next stage is to remove the Gaussian distributions, leaving us with the
original distribution of point charges we were attempting to sum over. This is shown
in Fig. A.3 (b). The reason that this is not an exercise in pointless mathematical
circularity is that the lattice of Gaussians can be summed in reciprocal space.
Evaluating this sum takes several stages but, by taking Fourier transforms of
potential and charge, solving the Poisson equation and then manipulating the
resulting expression, a sum in reciprocal space results [125]:

Vreciprocal =
4π

∆ ∑
G 6=0

S(G)

G2 eiG·r−G2/4α2
, (A.10)

where ∆ = a · b× c is the volume of the primitive unit cell in real space, G are
the reciprocal lattice vectors and S(G) is the structure factor in units of charge
[S(G) = ∑p qpeiG·rp , where the index p implies summation over the atoms in the
primitive unit cell].

Components of a sum in reciprocal space are necessarily periodic in real space,
and consequently it is not possible to exclude the Gaussian on the ith atom, which
is compensating for a Gaussian which we excluded in the Vreal term. So, finally, the
self term must be included, which removes this contribution:

Vself =

ˆ ∞

0
(4πr2dr)(ρi(r)/r) =

2qiα√
π

. (A.11)

This is shown in Fig. A.3 (c).
The resulting formula for the potential on the ion i is, then

Vi = Vreal + Vreciprocal + Vself

= ∑
j 6=i

qj

rj
erfc(αrj) +

4π

∆ ∑
G 6=0

S(G)

G2 eiG·r−G2/4α2 − 2qiα√
π

. (A.12)

This can be transformed into a formula for the Madelung constant by referring all
distances r to the nearest-neighbour distance r0. Evaluating the potential at a lattice
site is then a question of evaluating these two sums, and the self term. The final
distribution of charge being summed over is thus, as shown in Fig. A.3 (d), the
same as the original.
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Figure A.5: Optimising an Ewald summation for the 3D NaCl lattice in the screening
parameter α. Real space and reciprocal space spheres were fixed at rreal = 5a and
rreciprocal = 5a∗, respectively. The sum converges by these sphere sizes for a relatively
wide range of α values. The right y-axis label indicates the true value, M = 1.748.

As was mentioned above, choice of α is entirely pragmatic—its value is chosen
to optimise the computational efficiency of the Ewald sum. Obtaining a result as
quickly as possible is then a three-way optimisation between sphere size in real
space, sphere size in reciprocal space and convergence parameter α. A large value
of α screens real-space charges more effectively, reducing the size of real-space
sphere required, but has the opposite effect in reciprocal space. It can be shown that
convergence occurs at the same rate in real and reciprocal space when α =

√
π/a,

where a is the cubic lattice parameter [126]. However, typically the reciprocal-space
sum is more computationally efficient, and thus a larger value of α is often chosen to
bias the summation to reciprocal space. (As a rule of thumb, α is usually sufficiently
large to screen all but the charges in one unit cell in real space.) Various algorithms,
such as one in Ref. 127, exist to optimise the three parameters, but their exact
values are not crucial because Ewald summations tend to converge in a relatively
large region of (rreal, rreciprocal, α)-space. An example optimisation in α is shown in
Fig. A.5.

A.4 Ewald summation for dipole-field simulations

In order to make use of Ewald summation for dipole-field simulations, a threefold
generalisation of the Ewald method is required. Firstly, the muon will not sit at an
atomic site, but at an interatomic position somewhere in the crystal. Generalising
Ewald’s formula to work out the potential at any position is simple [127]:
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A.4. Ewald summation for dipole-field simulations

1. We now sum over all ions, the j 6= i condition no longer being relevant since
we are not at an ion site i.

2. We remove the self-term.

We also need to generalise the sum to work for dipoles rather than monopoles and,
further, fields rather than potentials. Ewald summation can be extended to calculate
fields, field gradients and so on, and to dipoles or higher-order multipoles. Though
the process is conceptually similar to monopole potential Ewald summation, it is
rather more mathematically involved. Details can be found in e.g. Refs. 128, 127, 125.
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Appendix B

The magnetic propagation vector

The magnetic propagation vector formalism allows compact description of any
periodic magnetic structure [129]. Magnetic periodicity often has a lower spatial
frequency than crystal translation: even a relatively simple antiferromagnetic struc-
ture might be two unit cells in each dimension, creating an eight-fold increase
in the number of moments which have to be specified in the magnetic unit cell.
The magnetic unit cell becomes infinitely large if the magnetic structure is incom-
mensurate along any axis. This limitation can be circumvented by using magnetic
propagation vectors, sometimes referred to as k-vectors, which allow large unit cells
to be represented as a small number of Fourier components.

The k-vector formalism is described in the familiar crystallographic notation. A
crystal comprises an infinite array of atoms j at positions Rj each comprising the
addition of a lattice translation vector Tl and a basis vector rp:

Rj = Tl + rp

= nla a + nlbb + nlcc + xpa + ypb + zpc, (B.1)

where a, b and c are the three non-coplanar lattice vectors; nla,b,c
∈ Z index the

infinite three-dimensional array of unit cells; and 0 ≤ xp, yp, zp < 1 together describe
the fractional coordinates of the atom p in the primitive unit cell. Magnetic order is
then superposed using the formalism of Bloch waves, which allows decomposition
of any periodic property into a Fourier series. This Fourier series is most easily
expressed in terms of reciprocal lattice vectors k, whose components are multiples
of the three reciprocal lattice vectors

a∗ =
2π
∆

b× c (B.2)

etc., where ∆ = a · b× c is the volume of the unit cell. Since the crystal properties
are periodic in real space, only wavevectors in the first Brillouin zone need to be
considered.

In the case of an ordered magnetic system, the periodic property is the atoms’
magnetic moments µj. These are computed by a Fourier summation
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B. The magnetic propagation vector

µj = ∑
{k}

mp,ke−ik·T , (B.3)

where mp,k is the Fourier component with wavevector k corresponding to an atom
p in the unit cell. The sum is taken over the set of wavevectors {k}, as explained
below; in many systems, this set consists of a single element. In general, mp,k is
a complex vector, but k must be real (though it may be incommensurate with the
lattice). An arbitrarily complicated periodic magnetic system can be described with
every atom in the primitive unit cell being assigned a unique set of indefinitely
many mp,k and k vectors. Thankfully, most systems can be described with fewer
parameters than this!

The resulting magnetic moment µj ∈ R3 because it represents a physical mag-
netic moment on the jth atom. However, m and k can be complex vectors, meaning
that the Fourier components are in general complex. In non-trivial cases these
vectors must be chosen carefully in order to ensure that the resulting magnetic
structure contains only real moments.

Elucidating ms and ks from experimental data, particularly from neutron diffrac-
tion, can be done by considering the exchange interactions and symmetry of a
system using representational theory [130]; this is beyond the scope of this thesis.

B.1 Examples
Ferromagnetic and simple antiferro- or ferrimagnetic structures can be simply
described in this formalism, with a single wavevector k and therefore a single
mp ≡ mp,k ∈ R3 for each atom q. In this case, mp ≡ µp; they represent the actual
magnetic moments of the atoms in the zeroth unit cell. The wavevector k describes
how these moments transform between unit cells. In order that µj ∈ R3, the
imaginary component of the complex exponential must be zero. This requires
values of k such that k · T = nπ, where n ∈ Z. Eq. (B.3) then reduces to

µj = mp cos(k · T). (B.4)

Since the sine component has vanished, the cosine is necessarily equal to ±1, and
so adjacent moments can either be identical or opposite, and equal in magnitude.
In these cases, the propagation vector will inevitably be perpendicular to the planes
of ferromagnetism in the material. Simple examples of structures of this type can
be seen in Fig. B.1 (a)–(c).

The trivial case, k = 0, can be used to describe any magnetic system where the
spatial and magnetic unit cells are equivalent. Eq. (B.4) simplifies even further to

µj = mp, (B.5)

implying that any atom will have the same moment as its equivalent in the zeroth
unit cell. Ferromagnets are a subset of this trivial description with the further
precondition that mutiple moments within the crystallographic unit cell must be
equal in magnitude and direction. It is also possible to envisage antiferro- and
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B.1. Examples

(a) type A (b) type C

(c) type G (d) type E

Figure B.1: Four antiferromagnetic structures on a simple cubic lattice with one
moment per unit cell [34, 131]. (a), (b) and (c) have simple propagation vectors,
perpendicular to planes of ferromagnetism within the material; ma,b,c = (0, 0, µ),

ka =
(

0, 0, 1
2

)
, kb =

(
1
2 , 1

2 , 0
)

, kc =
(

1
2 , 1

2 , 1
2

)
. (d) is a ‘zig-zag’ structure, requiring

two propagation vectors and basis vectors to describe: k1
d = −k2

d =
(

1
4 , 1

4 , 1
2

)
,

md,k1 =
(

0, 0, 1+i
2 µ
)

, md,k2 = m∗d,k1
=
(

0, 0, 1−i
2 µ
)

.

ferrimagnets with multiple moments per unit cell being described with this trivial
propagation vector.

However, the propagation vector formalism can be turned to describing any pe-
riodic magnetic structure, and is consequently capable of representing significantly
more complex examples than these. One slightly more subtle example is shown in
Fig. B.1 (d), a zig-zag magnetic structure which does not contain obvious planes
of ferromagnetism. This requires two propagation vectors and two corresponding
complex basis vectors to specify. It is possible to specify structures with modulated
moment size and/or varying moment orientation (e.g. sine structures, helical struc-
tures etc.) which vary either commensurately or incommensurately with the lattice
by appropriate application of propagation vectors [129].
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