Skip to content | 1 | 1 | m[100] | m[010] | m[001] | m[110] | m[110] | 2[100] | 2[010] | 2[001] | 2[110] | 2[110] | 4[001] | 43[001] | 4[001] | 43[001] |
---|
1 | 1 | 1 | m[100] | m[010] | m[001] | m[110] | m[110] | 2[100] | 2[010] | 2[001] | 2[110] | 2[110] | 4[001] | 43[001] | 4[001] | 43[001] |
---|
1 | 1 | 1 | 2[100] | 2[010] | 2[001] | 2[110] | 2[110] | m[100] | m[010] | m[001] | m[110] | m[110] | 4[001] | 43[001] | 4[001] | 43[001] |
---|
m[100] | m[100] | 2[100] | 1 | 2[001] | 2[010] | 43[001] | 4[001] | 1 | m[001] | m[010] | 43[001] | 4[001] | m[110] | m[110] | 2[110] | 2[110] |
---|
m[010] | m[010] | 2[010] | 2[001] | 1 | 2[100] | 4[001] | 43[001] | m[001] | 1 | m[100] | 4[001] | 43[001] | m[110] | m[110] | 2[110] | 2[110] |
---|
m[001] | m[001] | 2[001] | 2[010] | 2[100] | 1 | 2[110] | 2[110] | m[010] | m[100] | 1 | m[110] | m[110] | 43[001] | 4[001] | 43[001] | 4[001] |
---|
m[110] | m[110] | 2[110] | 4[001] | 43[001] | 2[110] | 1 | 2[001] | 4[001] | 43[001] | m[110] | 1 | m[001] | m[100] | m[010] | 2[100] | 2[010] |
---|
m[110] | m[110] | 2[110] | 43[001] | 4[001] | 2[110] | 2[001] | 1 | 43[001] | 4[001] | m[110] | m[001] | 1 | m[010] | m[100] | 2[010] | 2[100] |
---|
2[100] | 2[100] | m[100] | 1 | m[001] | m[010] | 43[001] | 4[001] | 1 | 2[001] | 2[010] | 43[001] | 4[001] | 2[110] | 2[110] | m[110] | m[110] |
---|
2[010] | 2[010] | m[010] | m[001] | 1 | m[100] | 4[001] | 43[001] | 2[001] | 1 | 2[100] | 4[001] | 43[001] | 2[110] | 2[110] | m[110] | m[110] |
---|
2[001] | 2[001] | m[001] | m[010] | m[100] | 1 | m[110] | m[110] | 2[010] | 2[100] | 1 | 2[110] | 2[110] | 43[001] | 4[001] | 43[001] | 4[001] |
---|
2[110] | 2[110] | m[110] | 4[001] | 43[001] | m[110] | 1 | m[001] | 4[001] | 43[001] | 2[110] | 1 | 2[001] | 2[100] | 2[010] | m[100] | m[010] |
---|
2[110] | 2[110] | m[110] | 43[001] | 4[001] | m[110] | m[001] | 1 | 43[001] | 4[001] | 2[110] | 2[001] | 1 | 2[010] | 2[100] | m[010] | m[100] |
---|
4[001] | 4[001] | 4[001] | m[110] | m[110] | 43[001] | m[010] | m[100] | 2[110] | 2[110] | 43[001] | 2[010] | 2[100] | 2[001] | 1 | m[001] | 1 |
---|
43[001] | 43[001] | 43[001] | m[110] | m[110] | 4[001] | m[100] | m[010] | 2[110] | 2[110] | 4[001] | 2[100] | 2[010] | 1 | 2[001] | 1 | m[001] |
---|
4[001] | 4[001] | 4[001] | 2[110] | 2[110] | 43[001] | 2[010] | 2[100] | m[110] | m[110] | 43[001] | m[010] | m[100] | m[001] | 1 | 2[001] | 1 |
---|
43[001] | 43[001] | 43[001] | 2[110] | 2[110] | 4[001] | 2[100] | 2[010] | m[110] | m[110] | 4[001] | m[100] | m[010] | 1 | m[001] | 1 | 2[001] |
---|
- This group contains 16 elements.
- This group is complete.
- This group is non-abelian. Operations which do not commute are highlighted.
permanent link Got it!
andrewsteele.co.uk uses cookies to enhance your experience. By continuing to use this site you agree to use of cookies. More info