A systematic study of a family of molecular magnets using muon-spin relaxation

A. J. Steele¹, T. Lancaster¹, S. J. Blundell¹, F. L. Pratt², H. I. Southerland³, K. A. Funk³, J. A. Schleuter³ and J. L. Manson⁴ ¹Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford. OX1 3PU, UK ²ISIS Facility, Rutherford Appleton Laboratory, Chilton, Oxfordshire. OX11 0QX, UK ³Materials Science Division, Argonne National Laboratory, Argonne. IL 60439, USA ⁴Department of Chemistry and Biochemistry, Eastern Washington University, Cheney. WA 99004, USA

$$[M(HF_{2})(pyz)_{2}]X$$

- M^{2+} ions bound into a 2D square lattice by pyrazine rings. (M = Cu, Co, Ni.)
- Layers tethered by HF, groups.
- Structure stabilised by X^- anions ($X = BF_{A'}$ CIO_4 , PF_6 , AsF_6 , SbF_6) in pseudocubic voids. Structure (right) is [Cu(HF₂)(pyz)₂]PF₆; only

• Small inter-layer exchange J gives rise to magnetic order. J and J can be derived by combining T_{N} from μ^+SR measurements (see below), high-field magnetisation and quantum Monte Carlo simulations.

one anion is shown, and hydrogens on the pyz rings have been omitted for clarity.

• The Cu–pyz lattices behave as quasi-2D Heisenberg antiferromagnets, implying no long-range magnetic order for *T* > 0.

 $J / J \approx 10^{-4}$ for Cu...BF $J/J \approx 10^{-2}$ for Cu...PF

[see P. A. Goddard *et al*, NJP **10** 083025 (2008)]

Muon-spin relaxation

 Muon spectra show oscillations below a critical temperature T_{N} implying the onset of long-range magnetic order.

- Two frequencies are observed, along with a fast-relaxing component:
- (%) $A(t) = A_0 [\rho_1 \cos(2\pi v_1 t + \varphi_1) e^{-\lambda_1 t}]$ + $p_2 \cos(2\pi v_2 t + \varphi_2) e^{-\lambda_2 t}$

Typical below- T_{N} μ^+ SR spectra, shown with frequencies and relaxation rates as a function of temperature for $[Cu(HF_{2})(pyz)_{2}]X$. • A phenomenological fit of the precession frequencies extracts critical parameters:

$$v(T) = v(0) [1 - (T/T_N)^{\alpha}]^{\beta}$$

Compound	<i>Τ</i> _N [K]	V ₁ (0)	V ₂ (0)	β	α
Cu…BF ₄	1.44	0.95	3.30	0.18	1.6
CuClO ₄	1.91	0.64	3.2	0.25	2.6
Cu…PF ₆	4.37	2.05	3.98	0.26	1.5
CuAsF ₆	4.32	1.66	3.56	0.22	1.3
CuSbF ₆	4.29	2.12	3.36	0.34	3.0
Ni…PF ₆	5.9	9.3	12.1	0.2	_
NiSbF ₆	12.25	9.00	12.30	0.34	3.1

 $A(t) = A_0 [\sum_{i} p_i D_i(t) e^{-\lambda_i t} + p_i e^{-\sigma_i^2 t^2}] + A_{bg} e^{-\lambda_{bg} t}$

 $\mu^+, S = \frac{1}{2}$

Cu...PF

UNIVERSITY OF

FORD

 $^{19}F, S = \frac{1}{2}$

• For $T_{N} < T < 100$ K, small-amplitude, low-frequency oscillations are observed. These are caused by entanglement of a muon and a fluorine nuclear spin. [see T. Lancaster *et al*, PRL **99** 267601 (2007)]

- Fit $D_i(t)$ to examine details of this interaction, such as $F-\mu$ separation, number of entangled nuclei, etc.
- Most compounds fit well with one Fµ component and one FµF component; only Fµ observed in Cu...ClO_{1}.

Muon site determination

• Dipole field simulations treat all moments in the crystal as classical point dipoles.

Key:

A(t)

Summing over these allows the field at the muon site to be established.

 $v = 135.5 \text{ MHzT}^{-1} \times |\mathbf{B}|$

- Probability densities of frequencies at plausible muon sites are evaluated.
- Lower frequencies only present near anions.

Cu...ClO

- Fµ oscillations in the Cu...ClO₄ compound mean there must be a muon site near the HF₂. This accounts for the higher frequency observed.
- The large range of high frequencies found near the pyrazine rings may explain the fast-relaxing component.

Engineering and Physical Sciences Research Council

EPSRC

Andrew Steele • a.steele@physics.ox.ac.uk • +44 (0) 1865 272 370

